• 제목/요약/키워드: ShellCode

검색결과 153건 처리시간 0.025초

9 절점 가정변형률 쉘 요소를 이용한 전기-기계연성 시스템 해석 (Analysis of coupled electro-mechanical system by using a nine-node assumed strain shell element)

  • 이상기;박훈철;윤광준;조창민
    • 한국항공우주학회지
    • /
    • 제31권2호
    • /
    • pp.25-34
    • /
    • 2003
  • 본 논문에서는 압전 작동기가 삽입되거나 부착된 구조를 해석하기 위하여, 기존의 기계적 문제만을 고려한 9 절점 가정변형률 쉘 요소의 정식화를 전기-기계연성 문제에도 적용 가능하도록 확장하였다. 본 쉘요소는 잠김현상을 완화할 수 있고, 두께변형을 고려하기 위해 각 절점에서 6개의 자유도를 갖는 특징이 있다. 전기-기계 자유도들은 구성방정식을 이용하여 연계시켰다. 변위장은 요소의 전체 두께방향으로 선형으로 가정하였고, 전기적 포텐셜은 각각의 압전재료층에 대해 선형으로 가정하였다. 확장된 정식화에 기초한 유한요소 프로그램을 개발하였고, 수치예제들을 통해 프로그램을 검증하였다. 개발된 쉘 요소에 의한 결과는 다른 참고문헌들의 결과들과 잘 일치하였다.

Development of FAMD Code to Calculate the Fluid Added Mass and Damping of Arbitrary Structures Submerged in Confined Viscous Fluid

  • Koo, Gyeong-Hoi;Lee, Jae-Han
    • Journal of Mechanical Science and Technology
    • /
    • 제17권3호
    • /
    • pp.457-466
    • /
    • 2003
  • In this paper, the numerical finite element formulations were derived for the linearized Navier-Stokes' equations with assumptions of two-dimensional incompressible, homogeneous viscous fluid field, and small oscillation and the FAMD (Fluid Added Mass and Damping) code was developed for practical applications calculating the fluid added mass and damping. In formulations, a fluid domain is discretized with C$\^$0/-type quadratic quadrilateral elements containing eight nodes using a mixed interpolation method, i.e., the interpolation function for the velocity variable is approximated by a quadratic function based on all eight nodal points and the interpolation function for the pressure variable is approximated by a linear function based on the four nodal points at vertices. Using the developed code, the various characteristics of the fluid added mass and damping are investigated for the concentric cylindrical shell and the actual hexagon arrays of the liquid metal reactor cores.

박막 요소를 이용한 스피커 그릴 일체형 맵 포켓의 사출 성형 해석 (Injection Molding Analysis of Map Pocket with a Speaker Grill Using Shell Element)

  • 김홍석;조명상;손중식;서태수;김태웅
    • 대한기계학회논문집A
    • /
    • 제25권8호
    • /
    • pp.1294-1301
    • /
    • 2001
  • In order to reduce the time and cost for assembly, automobile speaker grills have been injection molded with door trims or map pockets in one piece recently. However, several defects such as short shots or air traps can easily occur due to the decreased fluidity of the melting polymer according to the excessive heat transfer to the mold. Therefore, it is necessary to optimize the resin feed system and predict possible defects by CAE analysis. However it is not possible to obtain exact analysis results for the speaker grill by using general shell elements since the heat transfer in the thickness direction which is the dominant factor of the filling stage can not be considered. Therefore, there have been several efforts to simulate the injection molding nature of the speaker grill by using shell elements with an effective thickness which is smaller than the actual thickness of the part. Two empirical values have been recommended for the effective thickness in real practice. One is 50∼70% of the thickness of the speaker grill and another is the gap distance between the adjacent holes. In this paper, CAE analyses of a map pocket with a speaker grill were conducted using shell elements with both of these recommended effective thicknesses, and the predicted flow fronts were compared with the findings from injection molding experiments. The commercial code MOLDFLOW was used for injection molding analysis and an 850 ton injection molding machine was used for experiments.

급수가열기 추기노즐 충격판 주변의 동체감육 현상규명을 위한 실험 및 수치해석 연구 (A Study on Experiment and Numerical Analysis for Disclosing Shell Wall Thinning of a Feedwater Heater)

  • 김경훈;이우;황경모
    • 대한기계학회논문집B
    • /
    • 제31권1호
    • /
    • pp.1-7
    • /
    • 2007
  • Feedwater heaters of many nuclear power plants have recently experienced severe wall thinning damage, which will increase as operating time progresses. Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle - installed downstream of the high pressure turbine extraction steam line - inside number 5A and 5B feedwater heaters. At that point, the extracted steam from the high pressure turbine is two phase fluid at high temperature, high pressure, and high speed. Since it flows in reverse direction after impinging the impingement baffle, the shell wall of the number 5 high pressure feedwater heater may be affected by flow-accelerated corrosion. This paper describes the comparisons between the numerical analysis results using the FLUENT code and the down scale experimental data in an effort to determine root causes of the shell wall thinning of the high pressure feedwater heaters. The numerical analysis and experimental data were also confirmed by actual wall thickness measured by an ultrasonic test.

수직형 순환유동층 열교환기에서의 유체유동과 온도장의 수치해석 (Numerical analysis of fluid flow and thermal fields in the vertical fluidized bed heat exchanger)

  • 이병창;강호근;이명성;안수환
    • 동력기계공학회지
    • /
    • 제16권4호
    • /
    • pp.24-29
    • /
    • 2012
  • The numerical analysis by using CFX 11.0 commercial code was done for prediction of fluid flow and thermal field in the vertical heat exchanger. The present experimental studies were also conducted to investigate the effects of circulating solid particles on the fluid flow and temperatures in the fluidized bed vertical shell and tube type heat exchanger with counterflow, at which the solid particles of glasses (3 $mm{\Phi}$) were used in the fluidized bed with a smooth tube. The effect of circulation on the distance(L) of tube inlet and baffle plate was also examined. The present experimental and numerical results showed that the particles in the distance (Ds) of 15 mm showed a more efficient circulation without stacked the space and the LMTD(Log Mean Temperature Difference) in the fluidized bed type was much lower than that in the typical type shell and tube heat exchanger.

급수가열기 충격판 설계변경에 따른 동체감육 완화에 관한 유동해석 연구 (A Study on the Fluid Mixing Analysis for the Shell Wall Thinning Mitigation by Design Modification of a Feedwater Heater Impingement Baffle)

  • 김경훈;황경모;진태은
    • 한국시뮬레이션학회논문지
    • /
    • 제14권2호
    • /
    • pp.35-43
    • /
    • 2005
  • Feedwater heaters of many nuclear power plants have recently experienced wall thinning damage, which will increase as operating time progresses. As it is judged that the wall thinning damages have generated due to local fluid behavior around the impingement baffle installed in downstream of the high pressure turbine extraction steam line to avoid colliding directly with the tubes, numerical analyses using PHOENICS code were performed for two models with original clogged impingement baffle and modified multi-hole impingement baffle. To identify the relation between wall thinning and fluid behavior, the local velocity components in x-, y-, and z-directions based on the numerical analysis for the model with the clogged impingement baffle were compared with the wall thickness data by ultrasonic test. From the comparison of the numerical analysis results and the wall thickness data, the local velocity component only in the y-direction, and not in the x- and z-direction, was analogous to the wall thinning configuration. From the result of the numerical analysis for the modified impingement baffle to mitigate the shell wall thinning, it was identified that the shell wall thinning may be controlled by the reduction of the local velocity in the y-direction.

  • PDF

급수가열기 동체 감육 현상 규명을 위한 유동해석 연구 (A Study on the Fluid Mixing Analysis for Proving Shell Wall Thinning of a Feedwater Heater)

  • 신민호;황경모;김경훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.2017-2022
    • /
    • 2004
  • There are multistage preheaters in the power generation plan to improve the thermal efficiency of the plant and to prevent the components from the thermal shock. The energy source of these heaters comes from the extracted two phase fluid of working system. These two-phase fluid can cause the so-called Flow Accelerated Corrosion(FAC) in the extracting piping and the bubble plate of the heater for example, in case of point Beach Nuclear Power Plant and in the Wolsung Nuclear Power Plant. The FAC is due to the mass transport of the thin oxide layer by the convection. FAC is dependent on many parameters such as the operation temperature, void fraction, the fluid velocity and pH of fluid and so on. Therefore, in this paper velocity was calculated by FLUENT code in order to find out the root cause of the wall thinning of the feedwater heaters. It also includeed in the fluid mixing analysis model are around the number 5A feedwater heater shell including the extraction pipeline. To identify the relation between the local velocities and wall thinning, the local velocities according to the analysis results were compared with distribution of the shell wall thicknes by ultrasonic test.

  • PDF

New enhanced higher order free vibration analysis of thick truncated conical sandwich shells with flexible cores

  • Fard, Keramat Malekzadeh;Livani, Mostafa
    • Structural Engineering and Mechanics
    • /
    • 제55권4호
    • /
    • pp.719-742
    • /
    • 2015
  • This paper dealt the free vibration analysis of thick truncated conical composite sandwich shells with transversely flexible cores and simply supported boundary conditions based on a new improved and enhanced higher order sandwich shell theory. Geometries were used in the present work for the consideration of different radii curvatures of the face sheets and the core was unique. The coupled governing partial differential equations were derived by the Hamilton's principle. The in-plane circumferential and axial stresses of the core were considered in the new enhanced model. The first order shear deformation theory was used for the inner and outer composite face sheets and for the core, a polynomial description of the displacement fields was assumed based on the second Frostig's model. The effects of types of boundary conditions, conical angles, length to radius ratio, core to shell thickness ratio and core radius to shell thickness ratio on the free vibration analysis of truncated conical composite sandwich shells were also studied. Numerical results are presented and compared with the latest results found in literature. Also, the results were validated with those derived by ABAQUS FE code.

Bending analysis of doubly curved FGM sandwich rhombic conoids

  • Ansari, Md I.;Kumar, Ajay;Bandyopadhyaya, Ranja
    • Structural Engineering and Mechanics
    • /
    • 제71권5호
    • /
    • pp.469-483
    • /
    • 2019
  • In this paper, an improved mathematical model is presented for the bending analysis of doubly curved functionally graded material (FGM) sandwich rhombic conoids. The mathematical model includes expansion of Taylor's series up to the third degree in thickness coordinate and normal curvatures in in-plane displacement fields. The condition of zero-transverse shear strain at upper and lower surface of rhombic conoids is implemented in the present model. The newly introduced feature in the present mathematical model is the simultaneous inclusion of normal curvatures in deformation field and twist curvature in strain-displacement equations. This unique introduction permits the new 2D mathematical model to solve problems of moderately thick and deep doubly curved FGM sandwich rhombic conoids. The distinguishing feature of present shell from the other shells is that maximum transverse deflection does not occur at its center. The proposed new mathematical model is implemented in finite element code written in FORTRAN. The obtained numerical results are compared with the results available in the literature. Once validated, the current model was employed to solve numerous bending problems by varying different parameters like volume fraction indices, skew angles, boundary conditions, thickness scheme, and several geometric parameters.

Active control of delaminated composite shells with piezoelectric sensor/actuator patches

  • Nanda, Namita;Nath, Y.
    • Structural Engineering and Mechanics
    • /
    • 제42권2호
    • /
    • pp.211-228
    • /
    • 2012
  • Present study deals with the development of finite element based solution methodology to investigate active control of dynamic response of delaminated composite shells with piezoelectric sensors and actuators. The formulation is based on first order shear deformation theory and an eight-noded isoparametric element is used. A coupled piezoelectric-mechanical formulation is used in the development of the constitutive equations. For modeling the delamination, multipoint constraint algorithm is incorporated in the finite element code. A simple negative feedback control algorithm coupling the direct and converse piezoelectric effects is used to actively control the dynamic response of delaminated composite shells in a closed loop employing Newmark's time integration scheme. The validity of the numerical model is demonstrated by comparing the present results with those available in the literature. A number of parametric studies such as the locations of sensor/actuator patches, delamination size and its location, radius of curvature to width ratio, shell types and loading conditions are carried out to understand their effect on the transient response of piezoceramic delaminated composite shells.