• Title/Summary/Keyword: Shell stack mold

Search Result 6, Processing Time 0.018 seconds

Effects of Mold Variable and Main Alloying Element on the Mechanical Properties of Ductile Cast Iron Poured into Shell Stack Mold (쉘 적층 주조 구상흑연주철의 기계적 성질에 미치는 주형 변수 및 주 합금 원소의 영향)

  • Kim, Hyo-Min;Kwon, Min-Young;Chun, Byung-Chul;Kwon, Do-Young;Kim, Gi-Yeob;Kwon, Hae-Wook
    • Journal of Korea Foundry Society
    • /
    • v.40 no.2
    • /
    • pp.25-33
    • /
    • 2020
  • The effects of mold variable and main alloying element on the mechanical properties of ductile cast iron poured into shell stack mold were investigated. The strength and hardness of with the smaller cross-section of the diameter of 6.25mm were higher than those of 12.50mm. On the other hand, the elongation of the former was lower than that of the latter. The strength and hardness of the specimens obtained from the center layer in the 5-story stack mold were the lowest and those for other specimens were increased with increased distance from the center. The elongation of those were the highest of all. The strength and hardness of the specimens obtained from the center layer were decreased the elongation was increased with the increased number of layers. The strength and hardness were increased and the elongation was decreased roughly with the increased amounts of reaidual magnesium and carbon content added, respectively. The strength and hardness were increased and the elongation was decreased roughly with the increased amounts of silicon content added to 2.45wt% and rather decreased with that to 2.85wt%. The effect of silicon content showed the opposite tendency to those of residual magnesium and carbon content.

Effects of Alloying Elements on the Mechniacal Properties of 3.6wt%C-2.6wt%Si Ductile Cast Iron Poured into Shell Stack Mold (쉘 스택 주조 3.6wt%C-2.6wt%Si 조성 구상흑연주철의 기계적 성질에 미치는 합금 원소의 영향)

  • Kim, Hyo-Min;Kwon, Hae-Wook;Yeo, In-Dong;Nam, Won-Sick
    • Journal of Korea Foundry Society
    • /
    • v.29 no.3
    • /
    • pp.128-137
    • /
    • 2009
  • The effects of alloying elements on the mechanical properties of 3.6wt%C-2.6wt%C ductile cast iron poured into shell stack molds were investigated. The strength and hardness of the specimens obtained from the center layer in the 5-story stack mold were the lowest and those for other specimens were increased with increased distance from the center. The strength and hardness of the specimens obtained from the center layer were decreased with increased number of layers of the shell stack mold. The strength and hardness of the smaller specimens with the diameter of 9.5 mm were higher than those of 17.5 mm. On the other hand, the elongation of the former was lower than that of the latter. The strength and hardness were increased and the elongation was decreased roughly with the increased amounts of manganese and copper added, respectively. The strength and hardness were increased with the incrcased amount of molybdenum added to 0.40wt% and rather decreased with that to 0.80wt%. Those were greatly increased with the increased amount of tin added and the elongation was roughly decreased with it.

Effects of Alloying Element and Heat Treatment on the Mechanical Properties of Ductile Cast Iron Poured into Shell Stack Mold (쉘 적층 주조 구상흑연주철의 기계적 성질에 미치는 합금원소 및 열처리의 영향)

  • Kim, Hyo-Min;Kwon, Min-Young;Chun, Byung-Chul;Kwon, Do-Young;Kim, Gi-Yeob;Kwon, Hae-Wook
    • Journal of Korea Foundry Society
    • /
    • v.40 no.3
    • /
    • pp.76-84
    • /
    • 2020
  • The effects of Alloying Element and Heat Treatment on the mechanical properties of ductile cast iron poured into shell stack molds were investigated. The strength and hardness were increased and the elongation was decreased roughly with the increased amounts of tin and copper added, respectively. Those were greatly increased with the increased amount of tin added and the elongation was roughly decreased with it. In the simultaneous addition of copper and tin, the strength and hardness of the tin increased, but the elongation rate decreased. Those were greatly increased and this was decreased with normalizing. In the case of specimens with smaller section sizes during austempering processing, the strength and hardness were higher than those with larger sections, but the elongation rate was lower.

Effects of Additions of Magnesium and Aluminum on the Graphite Morphology and Mechanical Properties of 3.6wt.%C-2.5wt.%Si Cast Iron Poured into Shell Stack Mold (쉘 스택 주조 3.6wt.%C-2.5wt.%Si 주철의 흑연 형상과 기계적 성질에 미치는 마그네슘 및 알루미늄 첨가의 영향)

  • Lee, Hag-Ju;Kwon, Hae-Wook
    • Journal of Korea Foundry Society
    • /
    • v.29 no.5
    • /
    • pp.204-212
    • /
    • 2009
  • The effects of addition of magnesium only and the simultaneous addition of magnesium and aluminum on the graphite morphology of the cast iron with the composition of 3.6wt.% and 2.5wt.%Si poured into shell stack mold were investigated. The nodularity and mechanical properties of the specimen with smaller cross-section were higher than those with langer one, when copper was not added. When the magnesium only was added, the nodularity was decreased with decreased residual magnesium content and the C. V, graphite was obtained with the magnesium content in the range of 0.010~0.015wt.%. When the magnesium and aluminum were added together, the nodularity was decreased with decreased residual magnesium and increased aluminum contents. When copper was added, the volume fraction of pearlite in the matrix, strength and hardness were higher and elongation was lower for specimen with smaller cross-section. The volume fraction of pearlite, strength and hardness were increased and the elongation was decreased with increased copper content for the specimen with C, V, graphite.

Effects of Alloying Elements on the Mechanical Properties of Normalized and Quenched 3.60wt%C-2.60wt%Si Ductile Cast Irons Poured into Shell Stack Mold (쉘 스택 주조 3.60wt%C-2.60wt%Si 조성 구상흑연주철의 Normalizing 및 Quenching 처리 시 기계적 성질에 미치는 합금 원소의 영향)

  • Kim, Hyo-Min;Kwon, Hae-Wook;Yeo, In-Dong;Nam, Won-Sick
    • Journal of Korea Foundry Society
    • /
    • v.30 no.2
    • /
    • pp.66-75
    • /
    • 2010
  • The effects of alloying elements on the mechanical properties of normalized and quenched 3.60wt%C-2.60wt%C ductile cast iron poured into shell stack mold were investigated. The strength and hardness of as-cast specimen were increased and the elongation of it was decreased with the additions of Mn, Cu and Sn. The strength and hardness were increased with the addition of 0.40wt%Mo and then rather decreased with the increased addition of 0.80wt%. The strength and hardness were increased with normalizing treatment and the strengths of normalized specimens were increased slightly with the addition of alloying elements except Mo. Meanwhile the yield strength of the normalized specimen was increased slightly with the addition of Mo, the tensile strength was not changed much. Meanwhile the hardness and strength of the quenched specimen were slightly increased with the addition of Mn, those were almost not changed with the amount added. The tensile strength of the quenched specimen with larger diameter, when the Cu had been added, and the tensile and yield strengths of them, when Mo had been added, were increased with the addition of alloying element. On the other hand, those were not changed with the amount added. For the case of specimen with smaller diameter, there were no effects of these two elements. When Sn had been added, the strength of hardened specimen with larger diameter was slightly increased with the amount added. However, that with smaller diameter was rather decreased with it. The effect of specimen diameter on the strength of quenched specimen with the addition of Cu, Mo and Sn was reduced.

Contact Element Generation Method for Casting Analysis by using Projection Method (Projection Method에 의한 주조 해석용 접촉 요소망 생성 기법)

  • Nam, Jeong-Ho;Kwak, Si-Young
    • Journal of Korea Foundry Society
    • /
    • v.40 no.6
    • /
    • pp.146-150
    • /
    • 2020
  • In general, hot metal castings contract and molds expand during the cooling step of a casting process. Therefore, it is important to consider both the casting and mold at the same time in a casting process analysis. For a more accurate analysis that includes the contact characteristics, matching each node of the casting and mold in the contact area is recommended. However, it is very difficult to match the nodes of the casting and the mold when generating elements due to the geometric problem of CAD model data. The present study proposes a mesh generation technique that considers mechanical contact between the casting and the mold in a casting analysis (finite element analysis). The technique focuses on the fact that the mold surrounds the casting. After generating the 3D elements for the casting, the surface elements of the casting in contact with the mold are projected inside the mold to create contact elements that coincide with the contact surface of the casting. It was confirmed that high-quality contact element information and a 3D element net can be automatically generated by the method proposed in this study.