• Title/Summary/Keyword: Shell contents

Search Result 242, Processing Time 0.016 seconds

Positron Annihilation Spectroscopy of Active Galactic Nuclei

  • Doikov, Dmytry N.;Yushchenko, Alexander V.;Jeong, Yeuncheol
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.21-33
    • /
    • 2019
  • This paper focuses on the interpretation of radiation fluxes from active galactic nuclei. The advantage of positron annihilation spectroscopy over other methods of spectral diagnostics of active galactic nuclei (therefore AGN) is demonstrated. A relationship between regular and random components in both bolometric and spectral composition of fluxes of quanta and particles generated in AGN is found. We consider their diffuse component separately and also detect radiative feedback after the passage of high-velocity cosmic rays and hard quanta through gas-and-dust aggregates surrounding massive black holes in AGN. The motion of relativistic positrons and electrons in such complex systems produces secondary radiation throughout the whole investigated region of active galactic nuclei in form of cylinder with radius R= 400-1000 pc and height H=200-400 pc, thus causing their visible luminescence across all spectral bands. We obtain radiation and electron energy distribution functions depending on the spatial distribution of the investigated bulk of matter in AGN. Radiation luminescence of the non-central part of AGN is a response to the effects of particles and quanta falling from its center created by atoms, molecules and dust of its diffuse component. The cross-sections for the single-photon annihilation of positrons of different energies with atoms in these active galactic nuclei are determined. For the first time we use the data on the change in chemical composition due to spallation reactions induced by high-energy particles. We establish or define more accurately how the energies of the incident positron, emitted ${\gamma}-quantum$ and recoiling nucleus correlate with the atomic number and weight of the target nucleus. For light elements, we provide detailed tables of all indicated parameters. A new criterion is proposed, based on the use of the ratio of the fluxes of ${\gamma}-quanta$ formed in one- and two-photon annihilation of positrons in a diffuse medium. It is concluded that, as is the case in young supernova remnants, the two-photon annihilation tends to occur in solid-state grains as a result of active loss of kinetic energy of positrons due to ionisation down to thermal energy of free electrons. The single-photon annihilation of positrons manifests itself in the gas component of active galactic nuclei. Such annihilation occurs as interaction between positrons and K-shell electrons; hence, it is suitable for identification of the chemical state of substances comprising the gas component of the investigated media. Specific physical media producing high fluxes of positrons are discussed; it allowed a significant reduction in the number of reaction channels generating positrons. We estimate the brightness distribution in the ${\gamma}-ray$ spectra of the gas-and-dust media through which positron fluxes travel with the energy range similar to that recorded by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) research module. Based on the results of our calculations, we analyse the reasons for such a high power of positrons to penetrate through gas-and-dust aggregates. The energy loss of positrons by ionisation is compared to the production of secondary positrons by high-energy cosmic rays in order to determine the depth of their penetration into gas-and-dust aggregations clustered in active galactic nuclei. The relationship between the energy of ${\gamma}-quanta$ emitted upon the single-photon annihilation and the energy of incident electrons is established. The obtained cross sections for positron interactions with bound electrons of the diffuse component of the non-central, peripheral AGN regions allowed us to obtain new spectroscopic characteristics of the atoms involved in single-photon annihilation.

Larvae Growth and Biochemical Composition Change of the Pacific Oyster Crassostra gigas, Larvae during Artificial Seed Production (참굴 Crassostrea gigas 인공종묘생산 시 유생의 성장과 체성분 변화)

  • Hur, Young-Baek;Min, Kwang-Sik;Kim, Tae-Eic;Lee, Seung-Ju;Hur, Sung-Bum
    • Journal of Aquaculture
    • /
    • v.21 no.4
    • /
    • pp.203-212
    • /
    • 2008
  • A nutritional demand of oyster, Crassostrea gigas larva as part of research for improving of utilization of microalgae being used for the artificial oyster seed production. The change of body growth and biochemical compositions of larvae were investigated during larvae rearing in hatchery. The larvae were cultured in 60 M/T tank and fed mixture 6 different phytoplankton species, Isochrysis galbana (30%), Cheatoceros gracilis (20%), Pavlova lutheri (20%), Phaeodactylum triconutum (10%), Nannochryis oculata (10%) and Tetraselmis tetrathele (10%). The initial feeding amount was $0.3{\times}10^4cells/mL$ at three times a day to D-shaped larva and the feeding amount had been increased 30% gradually every two day since the larvae were raising. The larvae were developed from D shape to pediveliger stage for 12 days. The daily growth of shell length and hight were $5.8{\sim}30.8\;{\mu}m$ and $8.7{\sim}31.4\;{\mu}m$, respectively and weight gains were changed from D shape to pediveliger as follow: wet weight was $0.52{\sim}15.0\;{\mu}g/larva$, dry weight was $0.2{\sim}6.5\;{\mu}g/larva$, and ash free dry weight was $0.1{\sim}8.5\;{\mu}g/larva$. The larvae growth pattern shown a logarithmic phase from D shape to umbone stage but after that stage shown a exponential growth aspect. The crude protein, crude lipid and nitrogen free extract (NFE) of larvae during rearing periods were analyzed as $6.1{\sim}10.6%$, $0.6{\sim}1.1%$ and 1.0-2.7%, respectively. And the total amino acid contents of the larvae during rearing periods were in order as glutamic acid $1.26{\sim}2.24%$, aspartic acid $0.97{\sim}1.70%$, and methionine $0.12{\sim}0.33%$. Of the total fatty acid in the analyzed larvae, the saturated fatty acid (SSAFA) was decreased from 54.3% (D shaped larvae) to 17.1 % (pediveliger) as larvae development but the total mono-unsaturated fatty acid (${\Sigma}MOFA$) and Poly-unsaturated fatty acid (${\Sigma}PUFA$) were increased from 29.9% and 7.8% to 40.6% and 45.6%, respectively. By the way the each fatty acid of the larvae were composed of palmitic acid $9.89{\sim}36.95%$, oleic acid $12.17{\sim}32.29%$, linoleic acid $1.96{\sim}33.55%$, EPA $2.17{\sim}11.58%$ and DHA $1.95{\sim}4.51%$. As a result of this study, the larvae of oyster were demanded a various nutrients for healthy growth and the feeding control, expecially after umbone stage larvae are a rapidly growing time, is very important for success of artificial seed production.