• 제목/요약/키워드: Sheet cutter

검색결과 14건 처리시간 0.024초

MINLP를 이용한 제지 공정의 파지 손실 최소화 (Minimization of Trim Loss Problem in Paper Mill Scheduling Using MINLP)

  • 나성훈;고대호;문일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.392-392
    • /
    • 2000
  • This study performs optimization of paper mill scheduling using MINLP(Mixed-Integer Non-Linear Programming) method and 2-step decomposing strategy. Paper mill process is normally composed of five units: paper machine, coater, rewinder, sheet cutter and roll wrapper/ream wrapper. Various kinds of papers are produced through these units. The bottleneck of this process is how to cut product papers efficiently from raw paper reel and this is called trim loss problem or cutting stock problem. As the trim must be burned or recycled through energy consumption, minimizing quantity of the trim is important. To minimize it, the trim loss problem is mathematically formulated in MINLP form of minimizing cutting patterns and trim as well as satisfying customer's elder. The MINLP form of the problem includes bilinearity causing non-linearity and non-convexity. Bilinearity is eliminated by parameterization of one variable and the MINLP form is decomposed to MILP(Mixed-Integer Linear programming) form. And the MILP problem is optimized by means of the optimization package. Thus trim loss problem is efficiently minimized by this 2-step optimization method.

  • PDF

건식분쇄와 분급에 의한 용해용 펄프의 특성변화 (A Physico-chemical Change of Dissolving Pulp by Dry Milling and Fractionation)

  • 김태영;이송민;허용대;김진영;정양진
    • 펄프종이기술
    • /
    • 제47권5호
    • /
    • pp.23-32
    • /
    • 2015
  • In this study, chemical and physical changes of dissolving pulps which have similar viscosity by dry milling and fractionation were investigated. We used two types of dissolving pulp made from wood and cotton linter fiber, respectively. Dry milling was executed by knife cutter and pulp powders were fractionated by sieve shaker into 4 grades. We analyzed fiber properties, crystallinity index, viscosity, molecular weight of pulp sheet and powders. It was found that poly-dispersity index of cotton linter pulp was smaller than that of wood pulp, meaning that cotton pulp has more narrow molecular weight distribution. It was assumed that these were related to exposure times to chemical treatment which cut cellulose chains not evenly. At least 4 times of chemical treatments for wood pulp were executed and only two times of chemical treatments for cotton linter pulp were done. After dry milling average molecular weight and crystallinity index of cotton linter pulp powders were reduced and these were related to fines content and shape of pulp powders.

VLM-ST용 CAD/CAM 시스템에서 단위 형상층 생성 방법 및 적용예 (Generation of Unit Shape Layer on CAD/CAM System for VLM-ST)

  • 이상호;안동규;최홍석;양동열;문영복;채희창
    • 한국CDE학회논문집
    • /
    • 제7권3호
    • /
    • pp.148-156
    • /
    • 2002
  • Most Rapid Prototyping (RP) processes adopt a solid Computer Aided Design (CAD) model, which will be sliced into thin layers of constant thickness in the building direction. Each cross-sectional layer is successively deposited and, simultaneously, bonded onto the previous layer; and eventually the stacked layers from a physical part of the model. A new RP process, the transfer-type Variable Lamination Manufacturing process using expandable polystyrene foam sheet (VLM-ST), has been developed to reduce building time and to improve the surface finish of parts with the thick layers and a sloping surface. This paper describes the generation of Unit Shape Layer (USL), the cutting path data of the linen. hotwire cutter for the VLM-ST process. USL is a three-dimensional layer with a thickness of more than 1 mm and a side slope, and it is the basic unit of cutting and building in the VLM-ST process. USL includes data such as layer thickness, positional coordinates, side angles of each layer, hotwire cutting speed, the heat input to the hotwire, and reference shape. The procedure of generating USL is as follows: (1)Generation of the mid-slice from the CAD model, (2)Conversion of the mid-slice into a simply connected domain, (3)Generation to the reference shape for the mid-slice, (4)Calculation of the rotation angle of the hotwire of the cutting system.

롤 포밍 공정에서 컷팅 펀치 인선 각도가 제품 절단에 미치는 영향에 관한 연구 (A Study on the Effects of Products Section by Cutting Punch's Edge Angle during Roll Forming Process)

  • 정문수;김세환;이춘규
    • Design & Manufacturing
    • /
    • 제10권2호
    • /
    • pp.44-49
    • /
    • 2016
  • The roll forming produces mass products using the continuous production process. Also we need the process that continuous long material or goods cutting into a desired length. Our study uses 3-D driving cutter and roll forming material as SPCC to investigate this. When we cut the material using the process of roll forming, the shear resistance is raised at the cutting punch's edge. The result is remained the trouble about burr and progressive deformation on the material. This study shows the method minimizing the above trouble. The material of punch was considering heat generated on the continuous production process. So we used the type of STD 61 for the material of punch and had the vacuum heat treatment for the surface hardness of HRC 53. The structure of the mold is designed with forming a double cam die at the upper punch and the both sides of central core. We conducted the experiment three times. In the result when had to make V-groove within the angle between 105 and 110 on the punch front end, we could get the minimum shear resistance on the punch front end. Also with the same condition we minimizes the material jams in the continuous production process.