• Title/Summary/Keyword: Sheet characteristic

Search Result 259, Processing Time 0.024 seconds

Dynamic Characteristic of Coastal Reclaimed Land through Shaking Table Test (실내 진동대 실험을 통한 해안매립지반의 동적 특성 평가)

  • Shin, Eun-Chul;Kang, Hyoun-Hoi;Park, Jeong-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.640-648
    • /
    • 2009
  • Recently the truction of coastal reclaimation work has been extensively implemented in Korea. The Sondo New City is being established on the reclaimed land from the sea, construction companies of metro construction are planing to pull-out the sheet pile for saving the construction cost. In the case of soft marine clay, it is very difficult to pull-out the sheet pile by using the hydraulic hammer difficult. Therefore, the man of the field must be aware of vibration effect to the ground and the structure. For understanding the vibration effect to the ground during subway construction, the model was formulated with 1/25 braced-cut for subway construction. Scott and Iai(1989) proposed the law of the similarity for other experimental conditions. The laboratory model test was conducted under the vibration condition of sheet pile pulling out. The settlement on the ground surface was measured during the shaking table test. The pore water pressure was also monitored in the upper, middle, and lower layers of soil. The field settlement level and the pore water pressure can be predicted by using the results of the laboratory shaking table test.

  • PDF

Adhesion Change of AZO/PET Film by ZrCu Insertion Layer

  • Ko, Sang-Won;Jung, Jong-Gook;Park, Kyeong-Soon;Lim, Sil-Mook
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.3
    • /
    • pp.252-259
    • /
    • 2016
  • In order to form an aluminum-doped zinc oxide (AZO) transparent electrode film on a polyethylene terephthalate (PET) substrate used for a flexible display substrate, the AZO transparent electrode was produced at low temperature without substrate heating. Even though the produced electrode showed characteristic optical transmittance of 90 % (at 550 nm) and sheet resistance within $100{\Omega}/sq$, cracks occurred 10 minutes after loading applied 2 mm radius of curvature, and the sheet resistance increased linearly. An insertion layer of ZrCu was formed between the AZO film and the PET substrate to suppress the generation of cracks on the AZO film. It was verified that the crack was not generated 30 minutes after the loading of 2 mm radius of curvature, and no increase in sheet resistance was recorded. There was also not cracks in the dynamic bending test of 4 mm radius, but surface resistance was slightly increased. As a result, the ZrCu insertion film improved the interfacial adhesion between the substrate and AZO film layer without increasing sheet resistance and decreasing transmittance.

Characteristic Evaluation of Bifacial Solar Module Power Plant Using Back Sheet as Reflective (백시트를 반사재로 이용한 양면태양광 발전시스템 특성평가)

  • Kim, Hyun Jun;Jho, Min Jae;Cha, Hyang Woo;Kim, Kwang Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.112-116
    • /
    • 2022
  • The demand for a rear reflective material is continuing according to the expansion of the bifacial soar module and the effect on the re-reflection of the ground using a back sheet that is not used due to the increase in the supply of the bifacial solar module was confirmed. For analysis, a bifacial solar module with an output of 445W was connected to a single inverter of 49.84kW, and analysis of each two inverters was carried out. In the analysis of the results, it was confirmed that the generation amount increased by 5.25% compared to the case where the back sheet reflective film was not installed and it was confirmed that the increase in the generation amount was the noon time when strong solar radiation was irradiated, not the time of sunrise and sunset.

Flexural Capacity and Non-Linear Characteristic Evaluation of Circular Column Confined by Carbon Sheet Tube (카본시트튜브로 구속된 원형기둥의 휨내력 및 비선형 특성에 대한 연구)

  • Lee, Kyoung Hun;Yoo, Youn Jong;Kim, Hee Cheul;Hong, Won Kee;Lee, Young Hak
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.3
    • /
    • pp.143-150
    • /
    • 2007
  • Six full scale column specimens have been tested under the constant axial and cyclic lateral load. An equivalent stress block parameter was used to estimate flexural capacity of columns confined by carbon sheet tube. Through the non-linear regression analysis, behaviors of CFCST(Concrete Filled Carbon Sheet Tube) columns under the cyclic lateral load were estimated and compared with test results.

Identification of the Bulk Behavior of Coatings by Nanoindentation Test and FE-Simulation and Its Application to Forming Analysis of the Coated Steel Sheet (나노인덴테이션 시험과 유한요소해석을 이용한 자동차 도금 강판의 도금층 체적 거동결정 및 성형해석 적용)

  • Lee, Jung-Min;Lee, Kyoung-Su;Ko, Dae-Cheol;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1425-1432
    • /
    • 2006
  • Coating layers on a coated sheet steel frequently affect distributions of strain rate of sheets and deteriorate the frictional characteristics between sheets and tools in sheet metal forming. Thus, it is important to identify the deformation behavior of these coatings to ensure the success of the sheet forming operation. In this study, the technique using nano-indentation test, FE-simulation and Artificial Neural Network(ANN) were proposed to determine the power law stress-strain behavior of coating layer and the power law behavior of extracted coating layers was examined using FE-simulation of drawing and nano-indentation process. Also, deep drawing test was performed to estimate the formability and frictional characteristic of coated sheet, which was calculated using the linear relationship between drawing force and blank holding force obtained from the deep drawing test. FE-simulations of the drawing process were respectively carried out for single-behavior FE-model having one stress-strain behavior and for layer-behavior FE-model which consist of coating and substrate separately. The results of simulations showed that layer-behavior model can predict drawing forces with more accuracy in comparison with single-behavior model. Also, mean friction coefficients used in FE-simulation signify the value that can occur maximum drawing force in a drawing test.

Formation Temperature Dependence of Thermal Stability of Nickel Silicide with Ni-V Alloy for Nano-scale MOSFETs

  • Tuya, A.;Oh, S.Y.;Yun, J.G.;Kim, Y.J.;Lee, W.J.;Ji, H.H.;Zhang, Y.Y.;Zhong, Z.;Lee, H.D.
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.611-614
    • /
    • 2005
  • In this paper, investigated is the relationship between the formation temperature and the thermal stability of Ni silicide formed with Ni-V (Nickel Vanadium) alloy target. The sheet resistance after the formation of Ni silicide with the Ni-V showed stable characteristic up to RTP temperature of $700\;^{\circ}C$ while degradation of sheet resistance started at that temperature in case of pure-Ni. Moreover, the Ni silicide with Ni-V indicated more thermally stable characteristic after the post-silicidation annealing. It is further found that the thermal robustness of Ni silicide with Ni-V was highly dependent on the formation temperature. With the increased silicidation temperature (around $700\;^{\circ}C$), the more thermally stable Ni silicide was formed than that of low temperature case using the Ni-V.

  • PDF

Tailored Blank Welding of Stainless Steel to Make Lightweight Design Muffler (I) - Laser Butt Welding Characteristic of Stainless Steel Sheet - (머플러 부품의 경량화를 위한 STS강판의 TWB 용접 (I) - STS강판의 레이저 맞대기 용접특성 -)

  • Kim, Yong;Park, Pyoung-won;Park, Ki-young;Lee, Kyoung-don;Kim, Seok-jin
    • Laser Solutions
    • /
    • v.17 no.2
    • /
    • pp.11-18
    • /
    • 2014
  • This research was conducted as a fundamental study to apply tailored blank welding technique into automotive production process. Specially we tried to apply the TWB technique to exhaust system. The materials used in this work were ferritic 439 stainless steel sheet with a thickness of 1.2mm and 0.8mm. Welding tests were conducted for BOP test and dissimilar thickness (0.8 to 1.2t) cases. Major process parameters were position of focus, travel speed, shielding gas and joint (gap) condition. As a result, there are nothing significant welding characteristic compare with TWB of carbon steel. Stainless steel shows the good weldability and mechanical properties (tensile, hardness and forming strength) also shows high level. Just problem is gap condition. However, also in this case, it shows not only good forming strength but also base metal fracture after tensile test. And to conclude, it is good opportunity to make lightweight design muffler using TB welding technique.

  • PDF

A Study of Tool Planning for Forming Analysis in REF SILL OTR-R/L Auto-Body Panel Stamping Process (REF SILL OTR-R/L 차체판넬 스템핑 공정에서 성형해석을 통한 공법개발에 관한 연구)

  • Ko H.H.;Ahn H.G.;Lee C.H.;Ahn B.I.;Moon W.S.;Jung D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1980-1983
    • /
    • 2005
  • The characteristic of sheet metal process is the few loss of material during process, the short processing time and the excellent price and strength. The sheet metal process with above characteristic is common used in industrial field, but in order to analysis irregular field problems the reliable and economical analysis method is demanded. Finite element method is very effective method to simulate the forming processes with good prediction of the deformation behaviour. Among Finite element method, The static-implicit finite element method is applied effectively to analyze real-size auto-body panel stamping processes, which include the forming stage. In this paper, it was focussed on the drawability factors on auto-body panel stamping by AUTOFORM with using tool planing alloy to reduce law price as well as high precision from Design Optimization of ide. According to this study, the results of simulation will give engineers good information to access the Design Optimization of die.

  • PDF

A Study of Tool Planning for Forming Analysis in REF SILL OTR-R/L Auto-Body Panel Stamping Process (REF SILL OTR-R/L 차체판넬 스템핑 공정에서 성형해석을 통한 공법개발에 관한 연구)

  • Ko Hyung-Hoon;Ahn Hyun-Gil;Lee Chan-H;Ahn Byung-Il;Moon Won-Sub;Jung Dong-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.118-124
    • /
    • 2006
  • The characteristic of sheet metal process is the few loss of material during process, the short processing time and the excel lent price and strength. The sheet metal process with above characteristic is common used in industrial field, but in order to analysis irregular field problems the reliable and economical analysis method is demanded. Finite element method is very effective method to simulate the forming processes with good prediction of the deformation behavior. Among Finite element method, the static-implicit finite element method is applied effectively to analyze real-size auto-body panel stamping processes, which include the forming stage. In this paper, it was focused on the drawing ability factors on auto-body panel stamping by AUTOFORM with using tool planning alloy to reduce law price as well as high precision front Design Optimization of die. According to this study, the results of simulation will give engineers good information to access the Design Optimization of die.

Experimental Study on the Frictional Constraint of Draw Bead (드로오 비드의 마찰구속에 관한 실험적 연구)

  • 김영석;장래웅;최원집
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.658-666
    • /
    • 1992
  • In developing computer-aided design technology for optimization of stamping die design, it has been an important issue to treat the frictional constraint acting on the blank holder surface. The main goal of this work is to establish database of draw bead restraint force and clarify friction characteristic for various automotive sheet steels, which is essential in developing friction algorithm that can be used for CAD of stamping die design. Draw bead friction tester is used to evaluate the various parameters that affect the draw restraint force and the coefficient of friction for the cold rolled and the coated sheet steels such as drawing rate, lubricant type, surface property of material, etc.