• Title/Summary/Keyword: Sheet Metal Part

Search Result 162, Processing Time 0.029 seconds

Improvement of Formability in the Multi-Stage Sheet Pair Hydroforming Process (박판 페어 하이드로포밍 공정의 성형성 향상을 위한 다단 성형 공정의 개발)

  • 김태정;정창균;양동열;한수식
    • Transactions of Materials Processing
    • /
    • v.12 no.8
    • /
    • pp.702-709
    • /
    • 2003
  • In the automotive industry hydroforming of sheet metal pairs have received special attention because materials for various sheet metal components of vehicles have changed into the high strength steel, aluminum, and titanium blank having low formability. Uniform deformation over the whole region is a main advantage in the sheet hydroforming process. Because upper and lower parts could be produced simultaneously with one tool, hydroforming of sheet metal pairs is competitive in reducing the lead-time and development cost. In this paper, the multi-stage hydroforming process of sheet pair is proposed in order to increase the formability of a structural part like the oil pan shape. The upper die for forming oil pan shape is divided into two parts which can move separately. By the finite element simulation, the design parameters such as geometry of the tool and detailed specification of hydraulic pump were calculated and verified. For the strict comparison of the proposed process, the blank holding force is kept to a constant value during deformation by hydraulic valve. The deformed shape and strain distribution of the manufactured parts with the proposed process are compared with the results of simulation. In the multi-stage hydroforming process, maximum thickness strain was improved by more than 30 percent.

Development of Multi Forming Product Progressive Die for STS 304 Marine Part Sheet Metal (Part 2)

  • Sim, Sung-Bo;Sung, Yul-Min;Song, Young-Seok
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.151-156
    • /
    • 2000
  • Ultra precision progressive die have used for above one million's lot size of production part. In the field of design and making tool for press working, the progressive die for sheet metal (STS 304, thickness : 0.5mm) is a specific division. In order to prevent the defects, the optimum design of the production part, strip layout, die design, die making and tryout etc. are necessary. They require analysis of many kinds of important factors, i.e. theory and practice of metal press working and its phenomena, die structure, machining condition for die making, die materials, heat treatment of die component, know-how and so on. In this study, we designed and constructed a progressive die of multi-stage and performed try out. Out of these processes the die development could be taken for advance. Especially the result of tryout and its analysis become the characteristics of this paper (part 1 and part 2) that nothing might be ever seen before such as this type of research method on all the processes. In the part 2 of this study we treated die making and tryout mostly.

  • PDF

Influence of the Part Shape Complexity and Die Type on Forming Accuracy in Incremental Sheet Metal Forming (점진성형에서 형상의 복잡도와 다이의 종류가 성형 정밀도에 미치는 영향)

  • Lee, Kyeong-Bu;Kang, Jae-Gwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.5
    • /
    • pp.512-518
    • /
    • 2014
  • In this paper, the influence of part shape complexity and die type on forming accuracy in incremental sheet metal forming is presented. The part shape complexities are classified into two types, namely, of one and two-step shapes. Correspondingly, die types are classified into three types, namely, of no-, partial, and full die types. The experimental tests are performed separately on negative and positive forming methods. It is shown that for the one-step shape, there are no significant differences in forming errors between the cases of no- and full die types when the negative forming method is used. Furthermore, the full die type is better than the partial die when positive forming is used. For the two-step shape case, the full die type always exhibits better forming accuracy than the no- and partial die types, irrespective of the forming method used.

development of the High Utility Progressive Die for Sheet Metal Forming (Part 2)

  • Sim, Sung-Bo;Song, Young-Seok;Sung, Yul-Min
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.231-235
    • /
    • 2000
  • Precision progressive die have used for above ten thousand pieces of lot size production part. In the field of design and making tool for press working, the progressive die for sheet metal (SPC, thickness : 2mm) is a specific division. In order to prevent the defects, the optimum design of the U-bending production part, strip layout, die design, die making and tryout etc. are necessary. They require analysis of many kinds of important factors, i.e. theory and practice of metal pres working and its phenomena, die structure, machining condition for die making, die materials, heat treatment of die component, know-how and so on. In this study, we designed and constructed a progressive die of multi-stage and performed try out. Out of these processes the die development could be taken for advance. Especially the result of tryout and its analysis become the characteristics of this paper (part 1 and part 2) that nothing might be ever seen before such as this type of research method on all the processes. In the part 2 of this study we treated die making and tryout mostly.

  • PDF

Development of the Circular lancing Type Progressive Die for STS 304 Sheet Metal Working (Part 2)

  • Sim, Sung-Bo;Song, Young-Seok;Sung, Yul-Min
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.218-223
    • /
    • 2000
  • Ultra precision progressive die have used for above one million's lot size of production part. In the field of design and making tool for press working, the progressive die for sheet metal (STS 304, thickness : 0.5mm) is a specific division. In order to prevent the defects, the optimum design of the production part, strip layout, die design, die making and tryout etc. are necessary. They require analysis of many kinds of important factors, i.e. theory and practice of metal press working and its phenomena, die structure, machining condition for die making, die materials, heat treatment of die component, know-how and so on. In this study, we designed and constructed a progressive die of multi-stage and performed try out. Out of these processes the die development could be taken for advance. Especially the result of tryout and its analysis become the characteristics of this paper (part 1 and part 2) that nothing might be ever seen before such as this type of research method on all the processes. In the part 2 of this study we treated die making and tryout mostly.

  • PDF

The Establishment of Bonding Conditions of Cu Sheet using an Ultrasonic Metal Welder (초음파 금속 용착기를 이용한 Cu 박판의 접합성 평가)

  • Park, Woo-Yeol;Jang, Ho-Su;Park, Dong-Sam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.66-72
    • /
    • 2012
  • Ultrasonic metal welder is consisted of power supply, transducer, booster, and horn. Precise designing is required since each part's shape, length and mass can affect driving frequency and vibration mode. This paper gives a description of an experimental study of the ultrasonic welding of metals. A horn suitable for 40,000Hz was attached to the ultrasonic metal welder in order to weld Cu sheet. The Cu sheet welding was done with different amplitude, pressure and welding time, and its maximum tension was measured. Maximum tension of 177.99N was obtained when the pressure was 2.5bar, amplitude was 80%, and welding time was 0.34sec. Therefore, excessive welding condition negatively influences maximum tension measurement result.

A Study of Tool Planning for FRT-PLR-L/R Stamping Process by using Forming Analysis (성형해석을 이용한 프론트 필라의 성형 공법 개발에 관한 연구)

  • Jung, Dong-Won;Ko, Dae-Lim
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.10
    • /
    • pp.890-896
    • /
    • 2008
  • Sheet metal forming is one of the most useful and important method in manufacturing of the autobody panels because of the excellent production rate. The objectives of sheet metal forming processes are getting a desired geometrical shape of products with good quality, low cost and reasonable lead time. In this paper, we examined the validity of finite element method analysis on the automobile FRT-PLR-L/R stamping process by using the lancing engineering method. Lancing is a press operation in which a single-line cut or slit is made on part way across the strip stock, without removing any metal. As a result, it has shown that the proper lancing engineering method could prevent fracturing by improving sheet metal flow.

A Study on the Development of Lancing Process Method Using Forming Analysis (성형해석을 이용한 랜싱공법 개발에 관한 연구)

  • Jung, Dong-Won;Ko, Dae-Lim
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.171-177
    • /
    • 2008
  • The characteristics of sheet metal process are little loss of material during process, the short processing time and the excellent price and strength. It has been widely used in autobody, electronic components, aircraftbody, etc. Lancing is a press operation in which a single-line cut or slit is made on part way across the strip stock, without removing any metal. In this paper, we examined the validity of finite element method analysis on the automobile CTR-PLR -L/R stamping process by using the lancing engineering method. As a result, it has shown that the proper lancing engineering method could prevent fracturing by improving sheet metal flow.

Improvement of Joining Strength of Mechanical Joining Process of a Sheet Metal Pair (박판페어의 기계적 접합장치의 결합강도 개선에 관한 연구)

  • 윤희주;김태정;양동열;권순용;신철수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.29-32
    • /
    • 2002
  • The mechanical joining process of a sheet metal pair has been developed in order to replace the resistance spot welding process in case that joining of mechanically unweldable materials and coated sheet metals with different thickness are needed. Form-joining or clinching, a kind of mechanical joining process, is defined as joining process of a sheet metal pair by geometric constraint imposed by plastic deformation of workpieces without any additive part. It has been reported that the joining strength by commercial form-joining apparatus is 50∼70 percent of that by resistance spot welding. Therefore, a two-step form-joining process with a secondary punch is proposed. The device is designed to improve the joining strength by increasing the geometric constraint of the deformed shape by combining a primary punch, a secondary punch and a female die. In order to verify the improved joining strength by the designed process, the tensile-shear strength, the peel-tension strength and the asymmetric peel-tension strength are compared with those by the TOX process and resistance spot welding.

  • PDF

Stamping process design to develop a urea tank cover for excavators based on sheet metal forming analysis (굴삭기 요소수 탱크 커버의 신규 모델 개발을 위한 CAE 기반 프레스 성형 공정 설계)

  • Jeon, Yong-Jun;Heo, Young-Moo;Yun, Seok-Hyun;Kim, Dong-Earn
    • Design & Manufacturing
    • /
    • v.14 no.2
    • /
    • pp.49-55
    • /
    • 2020
  • Recently, when a new component of construction equipment is designed, a stamping process capable of producing parts having high appearance quality and precision has been gaining attention. However, in general, as it is developed based on existing parts made by welding metal sheets and tubes, frequent to die modification occurs, which increases the time and cost of developing new parts. Thus, it is necessary to reduce the cost by shortening the die development period. In this study, a stamping process was designed for the urea tank cover, which is a part for excavators, to reduce the die development period through sheet metal forming analysis. The stamping process was designed by determining the blank holding force after selecting the initial blank shape and size. The round value at the corner was modified such that formability is ensured. After selecting process parameters, the thickness reduction rate and spring-back effect were reviewed.