• Title/Summary/Keyword: Sheet Forming

Search Result 1,070, Processing Time 0.025 seconds

Simulation-based Stamping Process Design for a Pulsator Cover of a Washing Machine with Ferritic Stainless Steel Sheet (페라이트계 스테인리스 판재 적용을 위한 세탁기 회전날개의 전산 해석기반 성형공정설계)

  • Kim, Se-Ho;Kim, Kee-Poong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.349-356
    • /
    • 2011
  • This paper replaces a conventional austenitic stainless steel sheet to a ferritic stainless steel for the cost reduction of a pulsator cover of a washing machine. However, ferritic stainless steel has poor formability in comparison with austenitic one. The low formability of ferritic steel results in problems during stamping such as fracture, wrinkling, shape inaccuracy and so on. Design modification of the stamping tool is carried out with the aid of the finite element analysis for multistage stamping process of the pulsator cover. The simulation results show that fracture occurs on top of the product while wrinkles are generated by the excess metal near the wing part. Modification of the initial stamping die is performed to improve metal flow and to eliminate problems during the stamping process. Simulation with the modified design fully demonstrates that safe forming is possible without inferiorities.

$MgB_2$ Sheets using Mixture of Mg and B Powders by Powder Roll Compaction (Mg과 B 혼합분말을 이용하여 분말압연 공정으로 제조된 $MgB_2$ 초전도 판재연구)

  • Chung, K.C.;Chang, S.H.;Sinha, B.B.;Kim, J.H.;Dou, S.X.
    • Progress in Superconductivity
    • /
    • v.13 no.3
    • /
    • pp.184-188
    • /
    • 2012
  • $MgB_2$ superconducting sheets have been fabricated by powder rolling method using mixture of Mg and B powders. Sheet-type $MgB_2$ bulk samples of ~10 mm width and 50-100 mm long were squeezed out after compacted by two rotating rolls of 130 mm diameter with gap distance of 0.5 mm and speed of ~40 cm/min (~1 rpm). The nominal composition of Mg, which is ductile metal, was added up to 30% to facilitate forming the $MgB_2$ sheets. The annealed samples at $900^{\circ}C$ and 3 hrs showed superconducting transition temperature of ~32 K and critical current densities at zero fields were ${\sim}10^5A/cm^2$ at 5 K and ${\sim}5{\times}10^4A/cm^2$ at 20 K.

development of the High Utility Progressive Die for Sheet Metal Forming (Part 2)

  • Sim, Sung-Bo;Song, Young-Seok;Sung, Yul-Min
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.231-235
    • /
    • 2000
  • Precision progressive die have used for above ten thousand pieces of lot size production part. In the field of design and making tool for press working, the progressive die for sheet metal (SPC, thickness : 2mm) is a specific division. In order to prevent the defects, the optimum design of the U-bending production part, strip layout, die design, die making and tryout etc. are necessary. They require analysis of many kinds of important factors, i.e. theory and practice of metal pres working and its phenomena, die structure, machining condition for die making, die materials, heat treatment of die component, know-how and so on. In this study, we designed and constructed a progressive die of multi-stage and performed try out. Out of these processes the die development could be taken for advance. Especially the result of tryout and its analysis become the characteristics of this paper (part 1 and part 2) that nothing might be ever seen before such as this type of research method on all the processes. In the part 2 of this study we treated die making and tryout mostly.

  • PDF

Influence of Clearance in Half-piecing of Sheet Metal (금속판재의 하프피어싱 공정에서의 틈새 영향 연구)

  • Yeon, S.M.;Lee, S.K.;Chung, W.J.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.8
    • /
    • pp.437-441
    • /
    • 2013
  • Recently, the engraving of letters or a pattern on a product surface has received more attention especially in trying to satisfy the customer requirements. Half-piecing is a protrusion forming process that pierces only 40~50% of the material thickness. In the current study, the half-piercing technique for making clear letters by protruding sheet material was selected and studied. The influence of clearance and penetration depth was investigated by measuring the camber and extruded length of a protrusion after experiments. In addition, a numerical analysis was performed for the same working conditions and compared with experimental results. It is shown that, as the clearance increases, the camber of a protrusion increases rapidly and the extruded length decreases slightly. The deformation pattern around the cutting edge during half-piercing changes from an extrusion mode to a shearing mode as the clearance changes from minus to plus values. It is also confirmed that the experimental results show a good agreement with the numerical analyses.

A Study on Joining of Aluminum and Advanced High Strength Steel Using Friction Stir Hole Clinching (마찰교반 홀 클린칭을 이용한 알루미늄과 고장력강의 접합에 관한 연구)

  • Gao, L.H.;Kang, G.S.;Lee, K.;Kim, B M.;Ko, D.C.
    • Transactions of Materials Processing
    • /
    • v.26 no.6
    • /
    • pp.348-355
    • /
    • 2017
  • In recent years, dissimilar materials such as aluminum, magnesium, titanium, and advanced high strength steel are widely used in automotive body due to environment concerns and fuel consumption. Therefore, joining technology is important for assembling components made of dissimilar materials. In this study, friction stir hole clinching (FSHC) was proposed as a new mechanical joining method to join dissimilar materials. This process stirs and heats the upper sheet, forming mechanical interlocking with the lower sheet. The feasibility of this FSHC process was verified by comparing cross-section of joint in FSHC and hole clinching process under the same processing condition. Taguchi method was also applied to the FSHC process to estimate the effect of process parameters on joint strength and obtain optimal combination of process parameters. Joint strength of FSHC with optimal process condition was compared to that of FSHC with initial process condition as well as that of hole clinching with optimal process condition. Results showed that the FSHC process was useful for joining dissimilar materials, even if the formability of materials was low.

Experimental Investigation of the Springback Characteristics of Tailor-Welded Strips in U-bending (용접판재의 U-벤딩시 스프링백 특성에 관한 실험적 연구)

  • 신장모;장성호;허영무;서대교
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.48-53
    • /
    • 2002
  • Sheet or plate bending is one of the most important industrial metal forming processes. And considerable attention has been focused on gaining a better understanding of many of bending characteristics. One of defaults in bending process is the springback. In this study, the springback characteristics of tailor-welded strips in U-bending process was investigated. Furthermore, not only the relationships between the springback and the process variables such as the geometry of the tools and thickness combination of workpiece but also the heat effect which affects the springback due to welding process was experimentally considered. First, tailor-welded strips are joined by the laser welding process and consisted of two types of thickness combinations of the SCPI sheet, 0.8t${\times}$1.2t and 0.8${\times}$1.6t to investigate the effect of different thickness combination on the springback. Secondly, two different directionally welded strips, one was welded along the centerline of the strip-width and the other was along the centerline of strip-length, were adopted to compare the effects of the location of weld line on the springback. And three punch profile radii of 3, 9, and 15 m were used. Some cases of the experimental results were simulated by using a commercial FEM code, PAM-STAMP to compare the experimental results to the analytical ones.

  • PDF

Effect of Traditional Hanji Manufacturing Process on Its Physical Properties (전통한지의 처리공정에 따른 물성변화)

  • Seo, Yung B.;Choi, Chan-Ho;Jeon, Yang
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.4
    • /
    • pp.28-34
    • /
    • 2001
  • Korea traditional handmade paper, Hanji, has been known for more than thousand years for its high strength, high whiteness, high gloss, good ink reception and long lasting quality. Main component fiber of the Hanji is called 'Dak', which is the bast fiber of the Korea paper mulberry ($\textit{Broussonetia kazinoki}$). Dak has long fiber length, and high cellulose DP, if processed properly. The quality of Hanji is partly from the superior quality of Dak over wood fiber, and partly from the traditional papermaking process. The traditional papermaking process includes pulping, bleaching, refining, use of natural polymer, and sheet making process. Every traditional process has its special role. Comparisons between the modern papermaking technology and the traditional process were made in this study. The traditional process effectively protected cellulose DP in pulping and bleaching process, protected fiber length in refining process, and developed the high strength in the sheet forming process over the modern papermaking process.

  • PDF

Dynamic Tensile Tests of Steel Sheets for an Auto-body at the Intermediate Strain Rate (중변형률 속도에서의 차체용 강판의 동적 인장실험)

  • Lim, Ji-Ho;Huh, Hoon;Kwon, Soon-Yong;Yoon, Chi-Sang;Park, Sung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.456-461
    • /
    • 2004
  • The dynamic behavior of sheet metals must be examined to ensure the impact characteristics of auto-body by a finite element method. An appropriate experimental method has to be developed to acquire the material properties at the intermediate strain rate which is under 500/s in the crash analysis of auto-body. In this paper, tensile tests of various different steel sheets for an auto-body were performed to obtain the dynamic material properties with respect to the strain rate which is ranged from 0.003/sec to 200/sec. A high speed material testing machine was made for tension tests at the intermediate strain rate and the dimensions of specimens that can provide the reasonable results were determined by the finite element analysis. Stress-strain curves were obtained for each steel sheet from the dynamic tensile test and used to deduce the relationship of the yield stress and the elongation to the strain rate. These results are significant not only in the crashworthiness evaluation under car crash but also in the high speed metal forming.

  • PDF

Springback Characteristics of Tailor-Welded Strips in U-bending (레이저 용접 판재의 U-벤딩시 스프링백 특성에 관한 연구)

  • 장성호;신장모;서대교
    • Transactions of Materials Processing
    • /
    • v.12 no.5
    • /
    • pp.440-448
    • /
    • 2003
  • Sheet or plate bending is one of the most important industrial metal forming processes. Considerable attention has been focused on gaining a better understanding of bending characteristics. One of defaults in bending process is the springback. In this study, the springback characteristics of tailor-welded strips in U-bending process was investigated. Furthermore, effect of the process variables such as the geometry of the tools, thickness combination of workpiece, and welding prcoessing on springback were experimentally clarified. First, tailor-welded strips are joined by the laser welding process and consisted of two types of thickness combinations of the SCPl sheet, $0.8t{\times}1.2t$ and $0.8t{\times}1.6t$ to investigate the effect of different thickness combination on the springback. Secondly, two different directionly welded strips, one was welded along the centerline of the strip-width and the other was along the centerline of strip-length, were adopted to compare the effects of the location of weld line on the springback. Some cases of the experimental results were compared to the results simulated by using a commercial FEM code, PAM-STAMP and the theoretical results using the springback formula as well.

Production of Laser Welded Tube for Automobile Bumper Beam from 60kgf/$\textrm{mm}^2$Grade Steel Sheet (60kgf/$\textrm{mm}^2$급 자동차 범퍼빔용 레이저 용접 튜브 제조기술 및 장치연구)

  • Seo, Jung;Lee, Je-Hoon;Kim, Jong-Soo;Kim, Jung-O;Kang, Hee-Sin;Lee, Moon-Yong;Jung, Byung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.136-144
    • /
    • 2004
  • Optimal process and system to produce the laser welded tube for one body formed bumper beam are studied. The calculated size of tube is a thickness of 1.4mm, diameter of 105.4mm and length of 2000mm. The tube is shaped from a cold rolled high strength steel sheet(tensile strength: 60kgf/$\textrm{mm}^2$ grade). Two roll bending method is the optimal tube shaping process compared to UO-bending, bending on press brake, multi-step continuous roll forming and 3 roll bending methods. Weld quality monitoring and seam tracking along the butt-joint lengthwise to the tube axis are also studied. The longitudinal butt-joint is welded by the $CO_2$ laser welding system equipped with a seam tracker and plasma sensor. The constructed $CO_2$laser tube welding system can be used for the precision seam tracking and the real-time monitoring of weld quality. Finally, the obtained laser welded tube can be used for one-body formed automobile bumper beam.