• Title/Summary/Keyword: Shedding Phenomenon

Search Result 75, Processing Time 0.022 seconds

NUMERICAL ANALYSIS OF THE FLOW AROUND A ROTARY OSCILLATING CIRCULAR CYLINDER USING UNSTEADY TWO DIMENSIONAL NAVIER-STOKES EQUATION (Navier-Stokes 식을 이용한 회전 진동하는 2차원 원형 실린더 주위 유동 해석)

  • Lee, M.K.;Kim, J.S.
    • Journal of computational fluids engineering
    • /
    • v.16 no.3
    • /
    • pp.8-14
    • /
    • 2011
  • Although the geometry of circular cylinder is simple, the flow is complicate because of the flow separation and vortex shedding. In spite of many numerical and experimental researches, the flow around a circular cylinder has not been clarified even now. It has been known that the unsteady vortex shedding from a circular cylinder can vibrate and damage a structure. Lock-on phenomenon is very important in the flow around an oscillating circular cylinder. The lock-on phenomenon is that when the oscillation frequency of the circular cylinder is at or near the frequency of vortex shedding from a stationary cylinder, the vortex shedding synchronizes with the cylinder motion. This phenomenon can be recognized by the spectral analysis of the lift coefficient history. At the lock-on region the vortex is shedding by the modulated frequency to the body frequency. However, the vortex is shedding by the mixed frequencies of natural shedding and forced body frequency in the region of non-lock-on. In this paper, it was analyzed the relation between the frequency of rotary oscillating circular cylinder and the vortex shedding frequency.

Using the Under Voltage Load Shedding for Stability Enhancement of Power Systems Considering Induction Motor Load (유도전동기 부하 고려 시 저전압 부하차단을 이용한 전력계통 안정도 향상 방안)

  • Lee, Yun-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Recently, proportion of the induction motor load is gradually increased. When a contingency in the power systems, it has been discovered phenomenon that the voltage is delayed recover caused mechanical characteristics of the induction motor load. It can be a serious impact on the voltage stability of the power system considering induction motor load. The scheme to mitigate this phenomenon tripping off the motors to prevent voltage drop and delayed voltage recovery on the load demand side. Fault induced delayed voltage recovery phenomenon is caused by stalling of small induction motor load in transmission level contingencies. In this paper, fault induced delayed voltage recovery phenomenon mitigation method implementation under voltage load shedding on the korean power system considering induction motor load.

Dynamics and instability of the Karman wake mode induced by periodic forcing

  • Mureithi, Njuki W.
    • Wind and Structures
    • /
    • v.7 no.4
    • /
    • pp.265-280
    • /
    • 2004
  • This paper presents some fundamental results on the dynamics of the periodic Karman wake behind a circular cylinder. The wake is treated like a dynamical system. External forcing is then introduced and its effect investigated. The main result obtained is the following. Perturbation of the wake, by controlled cylinder oscillations in the flow direction at a frequency equal to the Karman vortex shedding frequency, leads to instability of the Karman vortex structure. The resulting wake structure oscillates at half the original Karman vortex shedding frequency. For higher frequency excitation the primary pattern involves symmetry breaking of the initially shed symmetric vortex pairs. The Karman shedding phenomenon can be modeled by a nonlinear oscillator. The symmetrical flow perturbations resulting from the periodic cylinder excitation can also be similarly represented by a nonlinear oscillator. The oscillators represent two flow modes. By considering these two nonlinear oscillators, one having inline shedding symmetry and the other having the Karman wake spatio-temporal symmetry, the possible symmetries of subsequent flow perturbations resulting from the modal interaction are determined. A theoretical analysis based on symmetry (group) theory is presented. The analysis confirms the occurrence of a period-doubling instability, which is responsible for the frequency halving phenomenon observed in the experiments. Finally it is remarked that the present findings have important implications for vortex shedding control. Perturbations in the inflow direction introduce 'control' of the Karman wake by inducing a bifurcation which forces the transfer of energy to a lower frequency which is far from the original Karman frequency.

A Study on Multi Level Load Shedding Control Scheme Strategy for Stabilization of the Korean Power System (국내 전력계통 안정화를 위한 다단계 부하차단 제어전략 수립에 관한 연구)

  • Lee, Yun-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.4
    • /
    • pp.255-261
    • /
    • 2016
  • Korean Power System are operating a load shedding system to prevent voltage instability phenomenon caused by severe line contingencies. In order to apply the load shedding scheme should be selected a location, amount, delay time. Current load shedding system is load shedding amount that has been calculated in the steady-state analysis to load shed the total amount in first level, load shedding amount calculated in advance, it is possible to perform an unnecessary load shedding. In this paper, set a multi-level load shedding control strategy step-by-step selection of load shedding amount for the prevention of excessive load shedding. In addition, through a voltage resilience analysis of the power system by applying motor load ratio and sensitivity parameter to selection the multi level load shedding ratio and delay time. For this reason, to take advantage of the limit data of interchange power, by utilizing interface power flow data to set a multi-level load shedding control strategy for the stabilization of the Korean Power System.

Implementation of Under Voltage Load Shedding for Fault Induced Delayed Voltage Recovery Phenomenon Alleviation

  • Lee, Yun-Hwan;Park, Bo-Hyun;Oh, Seung-Chan;Lee, Byong-Jun;Shin, Jeong-Hoon;Kim, Tae-Kyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.406-414
    • /
    • 2014
  • Significant penetration of induction motor loads into residential neighborhood and commercial regions of local transmission systems at least partially determine a vulnerability to a fault induced delayed voltage recovery (FIDVR) event. Highly concentrated induction motor loads with constant torque could stall in response to low voltages associated with system faults. FIDVR is caused by wide spread stalling of small HVAC units (residential air conditioner) during transmission level faults. An under voltage load shedding scheme (UVLS) can be an effective component in a strategy to manage FIDVR risk and limit the any potential disturbance. Under Voltage Load Shedding take advantage of the plan to recovery the voltage of the system by shedding the load ways to alleviation FIDVR.

DC-shift Instability in Hybrid rocket (하이브리드 로켓의 DC-shift 불안정 발생 특성)

  • Kang, Dong-Hoon;Lee, Chang-Jin;Monkhinoo, Monkhinoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.229-232
    • /
    • 2009
  • DC-shift phenomenon can be observed in Hybrid rocket combustion. This phenomenon makes performance drop which is structure problem or reduce thrust. Understanding of DC-shift phenomenon, the conditions of the hybrid rocket combustion stability can be found. In this paper, the condition of DC-shift was found and made by using acoustic mode and vortex shedding frequency. The conditions of stable combustion was defined from the experimental study of DC-shift phenomenon.

  • PDF

Utilizing Under Voltage Load Shedding Strategy to Prevent Delayed Voltage Recovery Problem in Korean Power System

  • Lee, Yun-Hwan;Oh, Seung-Chan;Lee, Hwan-Ik;Park, Sang-Geon;Lee, Byong-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.60-67
    • /
    • 2018
  • The presence of induction motor loads in a power system may cause the phenomenon of delayed voltage recovery after the occurrence of a severe fault. A high proportion of induction motor loads in the power system can be a significant influence on the voltage stability of the system. This problem referred to as FIDVR(Fault Induced Delayed Voltage Recovery) is commonly caused by stall of small HVAC unit(Heating, Ventilation, and Air Conditioner) after transmission or distribution system failure. This delayed voltage recovery arises from the dynamic characteristics associated with the kinetic energy of the induction motor load. This paper proposes the UVLS (Under Voltage Load Shedding) control strategy for dealing with FIDVR. UVLS based schemes prevent voltage instability by shedding the load and can help avoid major economic losses due to wide-ranging cascading outages. This paper review recent topic about under voltage load shedding and compare decentralized load shedding scheme with conventional load shedding scheme. The load shedding strategy is applied to an actual system in order to verify the proposed FIDVR mitigation solution. Simulations demonstrate the effectiveness of the proposed method in resolving the problem of delayed voltage recovery in the Korean Power System.

Numerical study of wake structure behind a square cylinder at high Reynolds number

  • Lee, Sungsu
    • Wind and Structures
    • /
    • v.1 no.2
    • /
    • pp.127-144
    • /
    • 1998
  • In this paper, the wake structures behind a square cylinder at the Reynolds number of 22,000 are simulated using the large eddy simulation, and the main features of the wake structure associated with unsteady vortex-shedding are investigated. The Smagorinsky model is used for parametrization of the subgrid scales. The finite element method with isoparametric linear elements is employed in the computations. Unsteady computations are performed using the explicit method with streamline upwind scheme for the advection term. The time integration incorporates a subcycling strategy. No-slip condition is enforced on the wall surface. A comparative study between two-and three-dimensional computations puts a stress on the three-dimensional effects in turbulent flow simulations. Simulated three-dimensional wake structures are compared with numerical and experimental results reported by other researchers. The results include time-averaged, phase-averaged flow fields and numerically visualized vortex-shedding pattern using streaklines. The results show that dynamics of the vortex-shedding phenomenon are numerically well reproduced using the present method of finite element implementation of large eddy simulation.

Further validation of the hybrid particle-mesh method for vortex shedding flow simulations

  • Lee, Seung-Jae;Lee, Jun-Hyeok;Suh, Jung-Chun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.6
    • /
    • pp.1034-1043
    • /
    • 2015
  • This is the continuation of a numerical study on vortex shedding from a blunt trailing-edge of a hydrofoil. In our previous work (Lee et al., 2015), numerical schemes for efficient computations were successfully implemented; i.e. multiple domains, the approximation of domain boundary conditions using cubic spline functions, and particle-based domain decomposition for better load balancing. In this study, numerical results through a hybrid particle-mesh method which adopts the Vortex-In-Cell (VIC) method and the Brinkman penalization model are further rigorously validated through comparison to experimental data at the Reynolds number of $2{\times}10^6$. The effects of changes in numerical parameters are also explored herein. We find that the present numerical method enables us to reasonably simulate vortex shedding phenomenon, as well as turbulent wakes of a hydrofoil.

Evaluation of URANS Turbulence Models through the Prediction of the Flow around a Circular Cylinder (원형 실린더 주위의 유동해석을 통한 URANS 난류 모델 성능 비교)

  • Kim, Minjae;Shin, Jihwan;Kwon, Laeun;Lee, Kurnchul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.861-867
    • /
    • 2014
  • In the present study, the flow around a circular cylinder at $Re=3.6{\time}10^6$ is numerically simulated using URANS approach. The objective of this study is to evaluate the turbulence models(Realizable k-${\varepsilon}$, RNG k-${\varepsilon}$) through the prediction of the unsteady flow characteristics around the cylinder. The time-averaged drag coefficients and vortex shedding phenomenon in the wake region are compared to available experimental data and other numerical results. The simulation with Realizable k-${\varepsilon}$ model is found to be more dissipative due to large eddy viscosity predicted in the wake region while the simulation with RNG k-${\varepsilon}$ model predicts a complex vortex shedding phenomenon with more coherent structures realistically.