• Title/Summary/Keyword: Shearing load

Search Result 87, Processing Time 0.027 seconds

Studies on Evaluation for Long-Term Structural Performance of Pinus densiflora Sieb. et Zucc. (I) -Shear Creep and Mechano-Sorptive Behavior of Drift Pin Jointed Lumber-

  • Hong, Soon-Il;Park, Jun-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.11-18
    • /
    • 2006
  • This study was carried out to evaluate the mechano-sorptive deflection of shear creep of drift pin jointed solid wood. Specimens were the solid wood of Pinus densiflora. The joint was composed with steel plate and drift pin, 85mm in length and 10mm in diameter. The creep tests were conducted under the constant loads in an variable environment. Five different shearing loads were applied parallel to the grain of specimens. The shearing loads applied were 170, 340, 510, 680 and 850 kgf. The stress levels were 10, 20, and 30, 40 and 50% of the bearing strength obtained from the tension-type lateral strength test. The creep tests for specimens were carried out for 10300 hours. A few general conclusions could be drawn from this study: The mechano-sorptive deflection (${\delta}$ ms) is defined as ${\delta}\;ms={\delta}\;t-({\delta}\;c+{\delta}\;sh)-{\delta}\;o$, where ${\delta}$ t is the total deflection, ${\delta}$ c is the pure creep, ${\delta}$ sh is shrinkage-swelling behavior, and ${\delta}$ o is the initial deflection. Changes of relative humidity may cause more severe creep deflection than those of constant humidity, especially during the drying process. The mechano-sorptive behaviors of specimens, except the effects of shrinkage and swelling, gradually increased with increasing time. The deflection is increased in desorption process and recovered in adsorption process. The deflections of drift pin jointed solid wood under different loads showed almost same tendency in all specimens. Although the creep deflection tendencies of each series are very similar, the specimens subjected to a large shearing load exhibit large creep deflections in the desorption process than do those to the small shearing load specimens.

A Study on Urethane Pad Blanking Process of Bellows Diaphragm for Hydrogen Compressor (수소압축기용 벨로우즈 다이아프램의 우레탄 금형 전단공정 연구)

  • Y. G. Kim;H. J. Park;K. E. Kim;M. P. Hong;G. P. Kang;K. Lee
    • Transactions of Materials Processing
    • /
    • v.33 no.1
    • /
    • pp.5-11
    • /
    • 2024
  • The development of a next-generation hydrogen compressor, a key component in the expansion of hydrogen charging infrastructure, is in progress. In order to improve compression efficiency and durability, it is important to optimize the precision forming and shearing processes of the diaphragm, which is the bellows unit cell, as well as the optimization of diaphragm shape itself. In this study, we aim to show that die and process design technology that can synchronize the inner and outer shearing points of the diaphragm for the precision forming of product can be constructed based on a numerical simulation. First, the damage model that can predict the fracture points will be determined using the shear load and shear zone measurements obtained by performing a blanking test of AISI-633 stainless steel. Next, we will explain the overall procedure based on numerical analysis model how to determine the shearing points according to the deformation pattern of urethane die for various shearing die design.

A Study on Reinforcing Effect of Multi-Bar Spring Nailing (다철근 스프링 네일링 공법의 보강효과 검토에 관한 연구)

  • Lee, Choong-Ho;Jung, Young-Jin;Kim, Dong-Sik;Chae, Young-Su
    • Journal of the Society of Disaster Information
    • /
    • v.3 no.2
    • /
    • pp.147-169
    • /
    • 2007
  • This study investigates the reinforcing effects of the Multi-bar Spring nails with respect to the conventional Soil-nails in artificial slopes. Based on wide experience related to design and construction, soil nails have been widely applied to reinforce slope in the world. Multi-bar spring nails are one of the improved soil nailing methods. These method maximizes bending, shearing, pull-out resistance for those multi-nails, not unit nail, that are inserted in the borehole using special spacer at regular intervals. In addition, because cutting plane is confined effect resulting from a pressured plate at the end of the nails with compression spring equipment, slope stability is secured using MS-nailing method. Analyzing bending, pull-out, shearing condition of MS-nail, it was examined throughly elastic region, load transfer capacity, reinforcing effect on cutting plate of MS-nails. In addition, Pilot and laboratory tests, numerical analysis were carried out to verify the superiority of MS-nailing method. In case, MS nailing method is applied to reinforce artificial slope, it was analyzed that bending, pull-out, shearing resistance was increased more than existing nailing method was applied. In this study, it was shown that surface failure was more or less prevented using MS-nailing method, confining effect on cutting plane using spring stuck to flexible equipment.

  • PDF

On the Wave Load of Tanker Model in a Shallow Water (특수선(特殊船) 설계(設計)에 관한 연구(硏究) -유조선(油槽船)의 천수중(淺水中)에서의 파랑하중(波浪荷重)-)

  • Z.G.,Kim;J.H.,Hwang;H.,Kim;J.M.,Yoo
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.17 no.2
    • /
    • pp.17-20
    • /
    • 1980
  • The shearing forces and bending moments acting on the tanker model[1] of $C_B$ 0.82 in regular oblique waves of shallow water are investigated by numerical calculations. The new strip method was adopted. It is concluded that in the shallow water shearing forces and the bending moments acting on the tanker model are higher than those of deep water waves by the present numerical investigations. The wave bending moment at the midship section is roughly twice of deep water value in the shallow of H/T less than 2. in this calculation.

  • PDF

Development of Retrofit Method for Beam Using Steel Plate Reinforced by Fiber Sheet (2) (무소음무진동 보보강공법 개발에 관한 연구(2))

  • Kim, Woo-Jae;Choi, Jong-Moon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.503-506
    • /
    • 2005
  • The purpose of this study was the Development of Retrofit Method for Beam Using Steel Plate Reinforced by Fiber Sheet.1. Additional reinforcements are not needed in the joining area of slab and beam web.2. Beam using carbon fiber reinforced plastic displays low effects in shearing effect.3. Beams reinforced steel plate by epoxy effect the capacities of strength. But the capacities of strength are rapidly reduced when adhesive surface be omitted. Thus details are needed in this case.4.Retrofit method for beam using steel plate reinforced by fiber sheet with epoxy rosin improves the capacities of strength and the initial stiffness, shows a large transformation since the maximum load likewise may be excellent to the shearing reinforcement.

  • PDF

Buckling Load Analysis of Spot-Welded Structures (점용접된 구조물의 좌굴하중해석)

  • 이현철;심재준;안성찬;한근조
    • Journal of Korean Port Research
    • /
    • v.14 no.1
    • /
    • pp.87-95
    • /
    • 2000
  • This stability of a plate structure is very crucial problem which results in wrinkle and buckling. In this study, the effect of the pattern of spot-welding points of the two rectangular plates on the compressive and shear buckling load is studied with respect to the thickness, aspect ratio of plates and number of welding spots. Buckling coefficient of the plate not welded was compared with that of two plates with various thickness to extract the effect of thickness. The effect of number of welding spots are studied in two directions, longitudinal and transverse directions. The conclusions obtained were that the reinforcement effect was maximized when the aspect ratio was close to 1.75 at compressive load condition and that the effect of number of welding spots in transverse direction was larger than that in longitudinal direction at shearing load condition.

  • PDF

Characteristics of Bearing Capacity for H pile by Model Test (모형실험을 이용한 H말뚝의 지지력 특성)

  • 오세욱;이준대
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.3
    • /
    • pp.99-105
    • /
    • 2001
  • This paper presents results km a series of model tests oil vertically loaded single piles to compare the behaviors of H and pipe piles under the same ground condition. The aims of this paper were to compare the bearing capacity of H-pile md pipe piles under in the same ground condition and to estimate the effect of gravity acceleration and relative soil density. Relative density of soil were made to be 40%, 80% and embedded length of pile on sand was increased by 10, 12, 14, 16 times of the diameter of pile, respectively. As a results of test series, allowable load of H-pile is from 6.4% to 18.2% larger than allowable load of pipe pile in relative density 80% and from 9.1% to 39.4% larger than allowable load of pipe pile in relative density 40%. As a results of numerical analysis, we were predicted behaviour of stress-displacement of pile with model test. In the case of relative density 80% and 40%, bearing capacity of H pile represent from 17.74% to 18.6% larger than allowable load of pipe pile.

  • PDF

Bucking Load Analysis of Spot-Welded Structures (점용접된 구조물의 좌굴하중해석)

  • 이현철;심재준;안성찬;한근조
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.265-272
    • /
    • 1999
  • This stability of a plate structure is very crucial problem which results in wrinkle and bucking. In this study, the effect of the pattern of spot-welding points of the two rectangular plates on the compressive and shear bucking load is studied with respect to the thickness, aspect ratio of plates and number of welding spots. Buckling coefficient of the plate not welded was compared with that of two plates with various thickness to extract the effect of thickness. The effect of number of welding spots are studied in two directions, longitudinal and transverse directions. The conclusions obtained were that the reinforcement effect was maximized when the aspect ratio was close to 1.75 at compressive load condition and that the effect of number of welding spots in transverse direction was larger than that in longitudinal direction at shearing load condition.

Structural Behavior of Sandwich Panels with Polymer Concrete Facings (폴리머 콘크리트 샌드위치 패널의 구조적 거동)

  • 연규석;함형길;김관호;이윤수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.261-266
    • /
    • 1993
  • This study was performed to evaluate the flexural behavior of polymer concrete sandwich panels which was made of unsaturated polymer resin. Bending tests under 4point loading was conducted for the 8 type of sandwich panel with different core and facing thickness. Results show that Load-Deflection, shearing force- shear strain, moment strength - strain relationships were effected by core and facing thickness.

  • PDF

A Study on Friction Anisotropy between Sand and Surface Asperities of Plate Using Modified Direct Shear Test (수정된 직접 전단 시험기를 이용한 모래와 표면 돌출부를 갖는 플레이트 사이의 마찰 이방성에 대한 연구)

  • Lee, Seung-Hun;Chong, Song-Hun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.2
    • /
    • pp.29-38
    • /
    • 2022
  • The friction anisotropy of shear resistance can be selectively used in geo-structures. For example, larger axially loaded deep foundation, soil nails, and tiebacks increase load carrying capacity due to induced large shear resistance while pile penetration and soil sampling produce minimal shear resistance. Previous studies confirmed direction-dependent shear resistance induced by interface between soil and surface asperity of plate inspired by geometrical shape of snake scale. The aim of this paper is to quantitatively evaluate interface friction angle with different surface asperities. Using the modified direct shear test, a total of 51 cases, which sand are prepared at the relative density of 40%, are conduced including 9 plates, two shear direction (shearing direction against the height of surface asperity is increased or decreased during shearing test), and three initial vertical stress (100 kPa, 200 kPa, 300 kPa). Experimental results show that shear stress is increased with higher height of surface asperity, shorter length of surface asperity, and the shearing direction that the height of surface asperity increases. Also, interface friction angle is decreased with larger surface asperity ratio, and shearing direction with increasing height of surface asperity produces larger interface friction angle regardless of the surface asperity ratio.