• Title/Summary/Keyword: Shearing Process

Search Result 199, Processing Time 0.019 seconds

High-temperature Deformation Behavior of 5052 Aluminum Alloy for Hot Shearing Process (고온전단가공을 위한 5052 알루미늄 합금의 고온 변형거동)

  • Song, Shin-Hyung;Choi, Woo Chun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.3
    • /
    • pp.177-181
    • /
    • 2016
  • Hot shearing is a method of producing various high-quality planar machine parts by using reduced punch load. In order to predict the results of this process, the deformation behavior of work material at elevated temperatures need to be studied. In this research, a tensile test was carried out for 5052 aluminum alloy at high temperatures of $240-540^{\circ}C$ and strain rates of 0.001-0.1/s. The results of the tensile tests were studied to predict the deformation of the alloy during the hot shearing process. The results showed that hot shearing within a temperature range of $340-440^{\circ}C$ and a strain rate rage of 0.001-01/s will be the most effective in reducing punch load and increasing the sheared edge in the case of 5052 aluminum alloy.

Shearing Mechanism in Hydro-Mechanical Punching Process (하이드로 메카니컬 펀칭공정의 전단 메커니즘)

  • Kim, Seung-Soo;Kim, Chang-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.3
    • /
    • pp.51-57
    • /
    • 2006
  • Hydro-mechanical punching was developed for preventing burr formation. Circular hole punching and Finite element method(FEM) analysis were conducted to investigate shearing characteristics of this process in comparison with conventional and mechanical counter punching. In this process hydrostatic pressing with appropriate medium was utilized instead of counter punch, which resulted in the delay of the point that the fracture is initiated and clean shearing surface was obtained. FEM analysis was utilized to find out optimum processing parameters and shearing mechanism for burr-free hole punching.

  • PDF

A Study on the Cutting Processes improvement of Micro-Spring by Finite Element Analysis (유한요소 해석을 이용한 마이크로 스프링의 전단공정 개선에 관한 연구)

  • 홍석관;전병희;김민건
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.421-426
    • /
    • 2003
  • Micro-suing that used on micro mechanism should be equal to distance between pitch and correct of shape. Therefore, micro spring must make by super-precision working. But, current step of super-precision processing depends on special quality of work piece and is ineffective the aspect of cost and productivity yet. Also, to use as demandable length shearing process perform but even if make precision spring, in the aspect of quality of coil spring make difficult that produce product of good quality. Therefore, purpose of this study presented proposed process that extract the point of processing factor after perform finite element analysis applying existing sheet shearing process to suing shearing process consider cost and productivity after evaluate.

  • PDF

Study on Influence of Process Parameter on Stretch Flangeability of Steel Sheet (판재 신장플랜지성에 미치는 전단 공정 인자의 영향 연구)

  • S.S. Han;H.Y. Lee
    • Transactions of Materials Processing
    • /
    • v.32 no.2
    • /
    • pp.61-66
    • /
    • 2023
  • The quality of the sheared surface affects the stretch flangeability of steel sheet. The quality of sheared surface is influenced by several process factors such as die clearance, shape of cutting edge, use of counter punch, and shear. In this paper, the influence of these shearing process factors on the stretch flangeability of the HSS (DP980) was analyzed through a shearing and a stretch flangeability test. When the die clearance was 10%, the effect of these shearing process factors on the stretch flangeability was the greatest, and the use of an acute angle blade was found to be more advantageous in the stretch flangeability than a right angle blade. It was found that the stretch flangeability was improved when active bending was applied during shearing.

A Study on Shearing Mechanism by FEM (유한요소법을 이용한 전단 메카니즘에 관한 연구)

  • 정성훈;강정진;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.211-223
    • /
    • 1995
  • The purpose of the present study is to examine shearing mechanism through rigidplastic finite element analysis. Difficulties arise in simulating shearing process due tothe narrow shear band formation andlackof proper fracture resolve these difficulties by using adaptive mesh generation crriterion. The simulation results are obtained for various punch clearances and these are compared with existing experimental results. It is shown that FEM simulation technique can be used to further understand the shearing mechanism.

  • PDF

Microstructural Modification of High-Fe Containing A356 Alloy by Liquid Metal Shearing Process (용융금속 교반공정을 통한 고Fe 함유 A356 합금의 미세조직 개질)

  • Kim, Bong-Hwan;Lee, Sang-Mok
    • Journal of Korea Foundry Society
    • /
    • v.31 no.6
    • /
    • pp.354-361
    • /
    • 2011
  • The liquid metal shearing device was constructed and assembled with a commercial high-pressure die-caster in order to induce intensive turbulent shearing force on molten aluminum alloys. The effect of the liquid metal shearing on the microstructure and tensile properties of A356 alloys was investigated with the variation of iron content. The experimental results show that dendritic primary ${\alpha}$-Al phase was effectively modified into a equiaxed form by the liquid metal shearing. It was also found that the needle-like ${\beta}$-AlFeSi phase in a Fe containing A356 alloy was changed into a blocky shape resulting in the improved mechanical properties. Based on the mechanical properties, it was suggested that the iron content in A356 alloy could be more widely tolerated by utilizing the liquid metal shearing HPDC process.

Numerical Analysis of Sheet Metal Shearing by the Element Kill Method (요소제거법에 의한 판재 전단가공의 수치해석)

  • 고대철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.191-195
    • /
    • 1996
  • Conventional single-side straight cutting of sheet metal is analyzed by the rigid-thermoviscoplastic finite element method. The FE-simulation is performed from initial stage to final stage of shearing process. The ductile fracture criterion and element kill method are used in the present work to estimate if and where a fracture occurs and to investigate the features of sheared surface in shearing process. The FE-simulation results are obtained for different clearances and these are compared with published experimental results. It is found that the results of the present work are in close agreement with published experimental results.

  • PDF

An Experimental Study of burrless shearing on the micro wire (마이크로 와이어의 전단 형상에 관한 실험적 연구)

  • Hong N. P.;Kim B. H.;Kim H. Y.;Kim W. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.448-452
    • /
    • 2005
  • Punching/blanking/shearing is among the oldest and most frequently used sheet metal forming process. We have developed the shear device for burrless cutting using the micro wire. Since the burr minimization and fine shear plane, this paper is a study on the effect of the shear angle and clearance of the cutter-cutter. And, we confirm the tendency of the shear plane. It is impossible to completely remove the burr in the shearing process. In order to minimize the burr size and fine shear plane, we have accomplished the various experiment conditions such as the shear angle and clearance. Despite the quality of shear plane is not good enough yet, it is possible to make the burr minimization and fine shear plane by the optimization of process parameters.

  • PDF

Analysis of Tool Wear in Sheet Metal Shearing (판재 전단 가공에서 금형의 마멸 해석)

  • 고대철;김태형;김병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.805-810
    • /
    • 1997
  • In this paper the technique to predict tool were theoretically in the sheet metal shearing process is suggested. The were in sheet metal tool affects the tolerances of final parts, metal flows and costs of processes. In order to predict the tool were the deformation of workpiece during the process is analyzed by using non-isothermal finite element program. The ductile fracture criterion and the element kill method are also used to estimate if and where a fracture will occur and to investigate the features of the sheared surface in shearing process. Results obtained form finite element simulation such as node velocities and node forces are transformed into sliding velocity and normal pressure on tool monitoring points respectively. The monitoring points are automatically generated and the were rates on these points are accumulated during a process. It is assumed that the wear depth on the tool surface are linear function of the lot sizes based upon the known experimental results. The influence of clearance between die and punch upon tool wear is were is also discussed during the process.

  • PDF

Prediction of Shearing Die Life for Producing a Retainer using FE Analysis (유한요소해석을 이용한 리테이너 전단 금형 수명예측)

  • Lee, I.K.;Lee, S.Y.;Lee, S.K.;Jeong, M.S.;Seo, P.K.;Lee, K.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.24 no.4
    • /
    • pp.264-271
    • /
    • 2015
  • In the current study, a method was proposed to quantitatively predict the wear and fatigue life of a shearing die in order to determine an effective replacement period for the die. The shearing die model of a retainer manufacturing process was used for the proposed method of quantitative life prediction. The retainer is produced through shearing steps, such as piercing and notching. The shearing die of the retainer is carefully controlled because the dimensional accuracy of the retainer is critical. The fatigue life for the shearing die was predicted using ANSYS considering S-N curves of STD11 and Gerber’s equation. The wear life for the shearing die was predicted using DEFORM-3D considering the Archard’s wear model. Experimental shearing of the retainer was conducted to verify the effectiveness of the proposed method for predicting die life. The fatigue failure of the shearing die was macroscopically measured. The wear depth was measured using a 3D coordinate measuring machine. The results showed that the wear and fatigue life in the FE analysis agree well with the experimental results.