• Title/Summary/Keyword: Shearing Amount

Search Result 42, Processing Time 0.02 seconds

Dynamics of Barrel-Shaped Young Supernova Remnants (항아리 형태 젊은 초신성 잔해의 동력학)

  • Choe, Seung-Urn;Jung, Hyun-Chul
    • Journal of the Korean earth science society
    • /
    • v.23 no.4
    • /
    • pp.357-368
    • /
    • 2002
  • In this study we have tried to explain the barrel-shaped morphology for young supernova remnants considering the dynamical effects of the ejecta. We consider the magnetic field amplification resulting from the Rayleigh-Taylor instability near the contact discontinuity. We can generate the synthetic radio image assuming the cosmic-ray pressure and calculate the azimuthal intensity ratio (A) to enable a quantitative comparison with observations. The postshock magnetic field are amplified by shearing, stretching, and compressing at the R-T finger boundary. The evolution of the instability strongly depends on the deceleration of the ejecta and the evolutionary stage of the remnant. the strength of the magnetic field increases in the initial phase and decreases after the reverse shock passes the constant density region of the ejecta. However, some memory of the earlier phases of amplification is retained in the interior even when the outer regions turn into a blast wave. The ratio of the averaged magnetic field strength at the equator to the one at the pole in the turbulent region can amount to 7.5 at the peak. The magnetic field amplification can make the large azimuthal intensity ratio (A=15). The magnitude of the amplification is sensitive to numerical resolution. This mens the magnetic field amplification can explain the barrel-shaped morphology of young supernova remnant without the dependence of the efficiency of the cosmic-ray acceleration on the magnetic field configuration. In order for this mechanism to be effective, the surrounding magnetic field must be well-ordered. The small number of barrel-shaped remnants may indicate that this condition rarely occurs.

Food Components Characteristic of Oysters Produced in Korea (국내 산지별 굴의 성분 특성)

  • Choi, Jong-Duck;Hwang, Seok-Min;Kang, Jin-Young;Kim, Sang-Hyun;Kim, Jeong-Gyun;Oh, Kwang-Soo
    • Journal of agriculture & life science
    • /
    • v.46 no.6
    • /
    • pp.105-115
    • /
    • 2012
  • The detailed proximate, fatty/amino acid, mineral composition, texture, color, chemical and taste compounds of six oysters (four kinds of cultured oysters and two kinds of wild oysters) in Korea were investigated. Length and weight of the shell removed cultured and wild oysters were 4.7~5.1 and 3.0~4.2 cm, and 5.9~9.1 and 2.6~5.5 g, respectively. The proximate compositions were not significantly different between cultured and wild oysters. Amino nitrogen and volatile basic nitrogen content of these ones were 232.8~258.2 and 160.5~213.9 mg/100 g, 9.5~12.0 and 7.8~9.5 mg/100 g, respectively. As a texture characteristic of muscle, shearing force were 95~114 and 105~132 g. Amounts of total amino acids of cultured and wild oysters were 9,004~10,198 and 8,165~8,942 mg/100 g, respectively. Major amino acids and inorganic ions were aspartic acid, glutamic acid, proline, alanine, leucine, phenylalanine, lysine, arginine and K, Na, Ca, Fe, S, P, Zn. Major fatty acids of these ones were 16:0, 18:0, 16:1n-9, 18:1n-9, 22:1n-9, 16:4n-3, 20:5n-3 and 22:6n-3, and there was little difference between the two groups. Amounts of free amino acids of cultured and wild oysters extracts were 1,444~1,620 and 1,017~1,277 mg/100 g, respectively, and major ones were taurine, glutamic acid, glycine, alanine, tryptophan, ornithine and lysine. There is a little difference in glycine, tryptophan, ornithine and arginine contents, but TMAO and TMA contents were low in amount, and were not significantly different between the two groups.