• Title/Summary/Keyword: Shearing

Search Result 882, Processing Time 0.021 seconds

Analysis of Error Rate in the Variations of Shearing Amount in Measuring the Internal Defect using a Shearography (전단간섭계를 이용한 압력용기 내부 결함 측정시 전단량 변화에 따른 오차분석)

  • Hong, Kyung-Min;Kang, Young-June;Choi, In-Young;Ahn, Yong-Jin;Yoon, Suk-Bum
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.726-732
    • /
    • 2012
  • Pipe and Pressure Vessels that is used in power plant and chemical industry have many Internal Defects that is corrosion caused by the flow of fluid. These Internal Defects that have possibility of explosion are very dangerous because it can not see from the outside. This days many companys using NDT method to find an Internal Defect. Most of the NDT methods have limitations that are constraint of shape and materials. But Sheargoraphy have many advantages compared conventional NDT method. It has very fast measuring speed, non-destructive and non contacting measurement. As well as it hasn't constraint of shape and materials. As a paper on the analysis of measurement of error, the important factors were the Shearing Amount and pressure, and discovered measurement of the Internal Defect of the object by using shearography. The optimal Shearing Amount and pressure was discovered and utilized.

Correlation between Tenderness and Other Carcass Characteristics of Hanwoo (Korean Native) Steers

  • Baik, D.H.;Hoque, M.A.;Park, H.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.12
    • /
    • pp.1677-1679
    • /
    • 2002
  • This experiment was carried out to evaluate the tenderness of meat and it''s correlation with other carcass traits of Hanwoo steers. The significantly (p<0.01) higher mastication and shearing were observed in boiled meat than in the raw meat but the coefficient of variations were greater in raw meat than in boiled meat. The correlation between raw and boiled meat for shearing and penetration were positive and significant (p<0.01). Negative and significant correlations were observed between mastication and eye muscle area (p<0.05) and also between shearing and cooking loss (p<0.01) in raw meat whereas, penetration in raw meat was positively and significantly (p<0.05) correlated with age of the steers. Shearing in boiled meat negatively and significantly correlated with age (p<0.05), carcass weight (p<0.01), back fat thickness (p<0.01) as well as muscle score (p<0.01). The pH was not significantly correlated with tenderness in both raw and boiled meat. There were possibilities that the tenderness of boiled meat could be predicted from the raw meat.

Influence of shaving allowance and clearance in pre-shearing process for improving shaving accuracy (셰이빙 정밀도 향상을 위한 예비전단 가공에서의 가공여유와 틈새의 영향)

  • Oh, Sol-Kil;Jo, Dae-il;Kang, Byung-Du;Kim, Jong-Ho
    • Design & Manufacturing
    • /
    • v.2 no.3
    • /
    • pp.40-44
    • /
    • 2008
  • Shaving in sheet metal forming is defined as a finish process to make the sheared surface clean which was blanked or pierced in the previous shearing stage. In this study the new shaving technique is applied to the progressive operation. The specimen is automatically fed by continuous movement of the strip. Which improve the positioning accuracy higher. For this study a square part which consist of blanking and piercing is selected for investigation and the progressive die which includes pre-piercing, pierce-shaving, half-blanking and blank-shaving etc is prepared for specimens of steel sheet(SPCC) and aluminum alloy sheet(AL5052). Experiments are carried out for several working variables such as shaving allowance, pre-shearing clearance and relative half-blanking depth. Consequently it was confirmed that the shaving by progressive die can be successfully employed to produce the clean parts requiring shaving process and optimum working conditions for shaving SPCC and AL5052 sheet metal are shaving allowance of 0.2mm(1.3% of thickness) and pre-shearing clearance of 5%.

  • PDF

Shear strength characteristics of a compacted soil under infiltration conditions

  • Rahardjo, H.;Meilani, I.;Leong, E.C.;Rezaur, R.B.
    • Geomechanics and Engineering
    • /
    • v.1 no.1
    • /
    • pp.35-52
    • /
    • 2009
  • A significantly thick zone of steep slopes is commonly encountered above groundwater table and the soils within this zone are unsaturated with negative pore-water pressures (i.e., matric suction). Matric suction contributes significantly to the shear strength of soil and to the factor of safety of unsaturated slopes. However, infiltration during rainfall increases the pore-water pressure in soil resulting in a decrease in the matric suction and the shear strength of the soil. As a result, rainfall infiltration may eventually trigger a slope failure. Therefore, understanding of shear strength characteristics of saturated and unsaturated soils under shearing-infiltration (SI) conditions have direct implications in assessment of slope stability under rainfall conditions. This paper presents results from a series of consolidated drained (CD) and shearing-infiltration (SI) tests. Results show that the failure envelope obtained from the shearing-infiltration tests is independent of the infiltration rate. Failure envelopes obtained from CD and SI tests appear to be similar. For practical purposes the shear strength parameters from the CD tests can be used in stability analyses of slopes under rainfall conditions. The SI tests might be performed to obtain more conservative shear strength parameters and to study the pore-water pressure changes during infiltration.

A study on the shearing of the straightened micro-wire (미세 와이어의 전단에 관한 연구)

  • Shin Y. S.;Hong N. P.;Kim B. H.;Kim H. Y.;Kim W. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.175-180
    • /
    • 2005
  • In this study, we have developed a novel wire straightener which uses the direct heating method (DHM) fer straightening the micro wire. Also, we have developed a shearing device for cutting the micro wire. In order to avoid the surface oxidization, we supplied the inert gas(Ar) during the heating process and examined the effect of gas flow rate. The effects of the tension and the current applied to the tungsten micro wires were also thoroughly studied. From various experiments and analyses, we could obtain fine straightness $(\approx1\;{\mu}m/1000\;{\mu}m)$ and roundness $(<{\pm}2{\mu}m\;/100{\mu}m)$ when the tension is $500\~~600gf$ and the current is about 1.5A. for burrfree cutting, counter-punch method which two cutters moving contrary was used. The cutting blade has various U-groove angle where upper $10^{\circ}$, $mid:25^{\circ}$, lower $0^{\circ}$. After the shearing process, we confirmed the shearing section.

  • PDF

Defect Sizing and Location by Lock-in Photo-Infrared Thermography (위상잠금 광-적외선 열화상 기술을 이용한 내분결함의 위치 및 크기 평가)

  • Choi, Man-Yong;Kang, Ki-Soo;Park, Jeong-Hak;Kim, Won-Tae;Kim, Koung-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.4
    • /
    • pp.321-327
    • /
    • 2007
  • In lock-in thermography, a phase difference between the defect area and the healthy area indicates the qualitative location and size of the defect. To accurately estimate these parameters, the shearing-phase technique has been employed which gives the shearing-phase distribution. The shearing-phase distribution has maximum, minimum, and zero points that help determine quantitatively the size and location of the subsurface defect. In experiment, the proposed technique is verified with artificial specimen and these related factors are analyzed.

An improved model of compaction grouting considering three-dimensional shearing failure and its engineering application

  • Li, Liang;Xiang, Zhou-Chen;Zou, Jin-Feng;Wang, Feng
    • Geomechanics and Engineering
    • /
    • v.19 no.3
    • /
    • pp.217-227
    • /
    • 2019
  • This study focuses on an improved prediction model to determine the limiting grouting pressure of compaction grouting considering the ground surface upheaval, which is caused by the three-dimensional conical shearing failure. The 2D-dimensional failure curve in Zou and Xia (2016) was improved to a three-dimensional conical shearing failure for compaction grouting through coordinate rotation. The process of compaction grouting was considered as the cavity expansion in infinite Mohr-Coulomb (M-C) soil mass. The prediction model of limiting grouting pressure of compaction grouting was proposed with limit equilibrium principle, which was validated by comparing the results in El-Kelesh et al. (2001) and numerical method. Furthermore, using the proposed prediction model, the vertical and horizontal grouting tube techniques were adopted to deal with the subgrade settlement in Shao-huai highway at Hunan Provence of China. The engineering applicability and effectiveness of the proposed model were verified by the field test. The research on the prediction model for the limiting grouting pressure of compaction grouting provides practical example to the rapid treatment technology of subgrade settlement.

Shape Design of Shearing Die for the Chassis Part with the Coupled Analysis of Shear and Die Structure (전단-구조연계해석을 이용한 섀시부품 전단금형의 형상설계)

  • Kim, S.H.
    • Transactions of Materials Processing
    • /
    • v.31 no.5
    • /
    • pp.261-266
    • /
    • 2022
  • To reduce the weight of the vehicle, the application of the high strength steel sheets to chassis parts is increased. High forming load is induced during the shearing process of steel chassis parts made of high strength steel, and the possibility of an eccentric load is increased depending on the product seating condition on the die, which decreases the stability and lifespan of the die. In this paper, a three-dimensional finite element analysis with the continuum element was conducted using the damage theory for the cam-trimming process of the front lower arm. The structural analysis of the trimming die was performed with the forming load result obtained from the analysis, and the amount of deflection and the stress distribution of the die during the shearing process were evaluated for the confirmation of the tool stability. The shape of the weak region of the die was modified according to structural analysis and then the stability was confirmed with the finite element analysis. The analysis result showed that the possibility of tool failure during cam-trimming process was remarkably reduced, and the reliability of the proposed modified design was validated.

Effects of normal stress, shearing rate, PSD and sample size on behavior of ballast in direct shear tests using DEM simulation

  • Md Hussain;Syed Khaja Karimullah Hussaini
    • Geomechanics and Engineering
    • /
    • v.35 no.5
    • /
    • pp.475-486
    • /
    • 2023
  • Ballast particles have an irregular shape and are discrete in nature. Due to the discrete nature of ballast, it exhibits complex mechanical behaviour under loading conditions. The discrete element method (DEM) can model the behaviour of discrete particles under a multitude of loading conditions. DEM is used in this paper to simulate a series of three-dimensional direct shear tests in order to investigate the shear behaviour of railway ballast and its interaction at the microscopic level. Particle flow code in three dimension (PFC3D) models the irregular shape of ballast particles as clump particles. To investigate the influence of particle size distribution (PSD), real PSD of Indian railway ballast specification IRS:GE:1:2004, China high-speed rail (HSR) and French rail specifications are generated. PFC3D built-in linear contact model is used to simulate the interaction of ballast particles under various normal stresses, shearing rate and shear box sizes. The results indicate how shear resistance and volumetric changes in ballast assembly are affected by normal stress, shearing rate, PSD and shear box size. In addition to macroscopic behaviour, DEM represents the microscopic behaviour of ballast particles in the form of particle displacement at different stages of the shearing process.

A Study on Urethane Pad Blanking Process of Bellows Diaphragm for Hydrogen Compressor (수소압축기용 벨로우즈 다이아프램의 우레탄 금형 전단공정 연구)

  • Y. G. Kim;H. J. Park;K. E. Kim;M. P. Hong;G. P. Kang;K. Lee
    • Transactions of Materials Processing
    • /
    • v.33 no.1
    • /
    • pp.5-11
    • /
    • 2024
  • The development of a next-generation hydrogen compressor, a key component in the expansion of hydrogen charging infrastructure, is in progress. In order to improve compression efficiency and durability, it is important to optimize the precision forming and shearing processes of the diaphragm, which is the bellows unit cell, as well as the optimization of diaphragm shape itself. In this study, we aim to show that die and process design technology that can synchronize the inner and outer shearing points of the diaphragm for the precision forming of product can be constructed based on a numerical simulation. First, the damage model that can predict the fracture points will be determined using the shear load and shear zone measurements obtained by performing a blanking test of AISI-633 stainless steel. Next, we will explain the overall procedure based on numerical analysis model how to determine the shearing points according to the deformation pattern of urethane die for various shearing die design.