• Title/Summary/Keyword: Shearing

Search Result 882, Processing Time 0.036 seconds

A Study on the Burr Formation in Shearing with Al Alloy (Al 합금의 전단작업시 발생하는 버어에 관한 연구)

  • Ko, Dae-Lim;Jung, Dong-Won;Kim, Jim-Moo;Lee, Kyung-Sick
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.2
    • /
    • pp.17-21
    • /
    • 2007
  • Shearing including punching, blanking, trimming, slitting, etc is one of the most frequently used processes in sheet metal manufacturing. It has been widely used for manufacturing autobody, electronic components, aircraftbody, etc. In this paper, it has been researched by the experiment to examine the effect of burr height corresponding to die clearance, cutting angle, tool sharpness, etc. This paper presents the experimental results with using Al alloy sheet.

  • PDF

Transient Response of an Electrorheological Fluid in Shear Flow (전단 유동 하에서 전기유변유체의 과도응답 특성)

  • Choi, Byung-Ha;Nam, Yun-Joo;Park, Myeong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.6
    • /
    • pp.411-417
    • /
    • 2009
  • The transient shear stress response of an electrorheological fluid is investigated experimentally. The characteristic time constants of an electrorheological fluid sheared between two concentric cylinders were obtained under various electric field strengths and shear rates. Also, two experimental modes are adopted to investigate the effect of the shear flow on the dynamic behavior of the fluid; one is that the electric field is induced before shearing, and the other is the electric field is induced after shearing. From the difference in the response time between two modes, the cluster formation time were obtained. The response times were decreased with the increase of the shear rate, irrelatively of the electric field strength. The cluster formation time were monotonically increased with increase of shear rate, and thereafter, were converged with a certain value.

Rheological properties of some thermotropic liquid crystalline polymers

  • Fan, Yurun;Dai, Shaocong;Tanner, Roger I.
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.3
    • /
    • pp.109-115
    • /
    • 2003
  • Rheometry testing and the DSC measurement of five thermotropic liquid crystalline polymers (TLCP) have been carried out. The dynamic viscosities of the five TLCPs show a typical shear-thinning behaviour obeying the power-law with the power indices from 0.2 to 0.3. When these TLCPs are heated above the melting temperatures determined by the DSC measurements, the dynamic viscosities first rapidly decrease by 2~3 orders of magnitude then level off, finally increase gradually with the further increasing of temperature. The steady shearing exhibited the same behaviour as the dynamic shearing, but serious edge fracture of material slippage out of the plates occurred. The abnormal temperature dependence of the viscosities can be explained by the nematic-isotropic transition. By using the concept of activation energy, we propose a simple model which can fit the shear-thinning behaviour quite well and predict qualitatively correct temperature effects.

Pulverizer Development for multiple cracking of polymer materials (고분자재료의 다중파쇄 분쇄기 개발)

  • Jung H.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1668-1671
    • /
    • 2005
  • Vulcanized natural rubber was pulverized using a single screw extruder in a non-cryogenic Solid Shear Extrusion process where rubber granulates were subjected to high compressive and shear stresses. The producted particles had diameters ranging from 40 to 1200$\{mu}m$. A principle used in this paper was developed in Russia. The development method for producing a polymeric material powder consists in compressing said material by shearing the material during a pressure increase and cooling. Consecutive breakdown is carried out by shearing the material during the pressure decrease and cooling.

  • PDF

Study on textures and work hardening in AA3003 sheets during CCSS deformation (AA 3003 판재 CCSS 가공 집합조직과 가공경화 연구)

  • 이재필;허무영;정영훈;박종우
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.96-98
    • /
    • 2003
  • The evolution of texture and microstructure during continuous confined strip shearing (CCSS) in aluminum 3003 alloy sheets was investigated. The tools of CCSS based on the equal channel angular pressing (ECAP) were designed to provide a constant shear deformation of the order of 0.5 per pass while preserving the original sheet shape. FEM results indicated that the shear formation is not homogeneous throughout the sample thickness, in particular at the surface layers. A randomization of textures took place during the CCSS deformation. Observations by TEM and EBSD revealed the formation of sub-micrometer sized grains after CCSS.

  • PDF

Wear Analysis of the Ti-N Coated Punch in Piercing According to the Volume of Production (생산수량에 따른 Ti-N 코팅 펀치의 마멸해석)

  • 황상홍;고대철;김병민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.3
    • /
    • pp.149-157
    • /
    • 2000
  • Tool wear in the shearing process such as blanking, piercing and trimming is very important, because it has great effects on the dimensional accuracy, working efficiency and economy. Most of tools in the shearing process have the coated layer at surface fur good wear and corrosion resistance. When the surface of tool is teated, the wear Phenomena of coated surface layer and inner layer may be different. This paper describes a computer modelling technique by the finite element method in order to investigate the wear mechanism and to predict the wear profile of Ti-N coated tool in piercing process according to the volume of Production. Wear coefficients of the coated layer and inner layer are obtained through Pin-on-Disk wear test, respectively. To verify the effectiveness of the suggested technique, the technique is applied to wear analysis in piercing recess of piston pin and simulation results are compared with experimental ones.

  • PDF

Study on the Fluid Film Thickness and Pressure of Elliptical Elastohydrodynamic Lubrication with Spin Effect for the Power Transmitting Contact in the Continuously Variable Transmission (무단 변속기의 동력전달 접촉에서 회전운동을 고려한 타원형상의 점접촉 탄성유체윤활연구)

  • Jang, Si-Youl
    • Tribology and Lubricants
    • /
    • v.21 no.6
    • /
    • pp.272-277
    • /
    • 2005
  • Continuously variable transmission (CVT) of toroidal type has a elliptical shape of contact zone under the elastohydrodynamic lubrication (EHL) condition, where the power is transmitted only by shearing the lubricant. Due to the small contact area of elliptical shape, the traction of the shear behaviors of lubricant over the contact zone is under extremely high contact pressure over 1.0GPa. During the power transmission by shearing the fluid, many kinds of mechanical movements occur such as squeezing, sliding, rolling and spin. Among the movements, the spin effect that is the most undesirable contact behavior in transmitting the power frequently makes significant abnormal wear damage. In this work, the analysis of elliptical contact of EHL with spin effect is performed, which will give very useful information to understand the traction behaviors in toroidal type of CVT system.

Study on Soil Parameters and Two Dimensional Analysis in Slope Stability (사면안정 2차원해석과 토질정수에 관한 연구)

  • 김경진;김규문;박일철
    • Journal of the Korean Professional Engineers Association
    • /
    • v.18 no.3
    • /
    • pp.21-27
    • /
    • 1985
  • Earthen mass located beneth a sloping group surface, whether natural or manmade, have a tendency to move downward and outward under the influence of gravity. Unless this tendency is suitably counteracted by the Shearing resistances within the mass, a landslide occurs. Avoiding such instabilities is a major concern of the geotechnical engineer. The shearing behavior of a soil is determined empirically, i.e., by field tests or laboratory tests. This results are applied to the slope stability analysis. The factor of safety for slope stability analysis is much more sensitive to the choice of strength parameters as interpreted from soil tests than to the choice of the computational method of analysis. This paper was investigated the influence of the change in the factor of safety due to a change in one of the parameters, relative to the total change in the factor of safety due to change in all parameters. A conclusion may be reached with respect to the required precision definition of the different variables to limit uncertainties in the factor of safety to tolerable levels.

  • PDF

A NEW ON-LINE BAR JOINING TECHNOLOGY FOR ENDLESS HOT ROLLING

  • Lee, Jong-Sub;Kim, Ki-Chol;Won, Chun-Soo;Kenji Horii;Talmo Funamoto
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.282-288
    • /
    • 2002
  • A new on-line bar joining technology employing the concept of a solid-state joining has been developed for the endless rolling by POSCO, RIST and MHMM Inc.. In the process, the bars are partially descaled, partially overlapped, joined by shearing action and crops are finally removed. The feasibility of the developed process was evaluated in this study in terms of microstructures and mechanical properties of joints, and the response of the joint to rolling.

  • PDF

Lateral buckling of thin-walled members with openings considering shear lag

  • Wang, Quanfeng
    • Structural Engineering and Mechanics
    • /
    • v.5 no.4
    • /
    • pp.369-383
    • /
    • 1997
  • The classical theory of thin-walled members is unable to reflect the shear lag phenomenon since it is based on the assumption of no shearing strains in the middle surface of the walls. In this paper, an energy equation for the lateral buckling of thin-walled members has been derived which includes the effects of torsion, warping and, especially, the shearing strains which reflect the shear lag phenomenon. A numerical analysis for the lateral buckling of thin-walled members with openings by using Galerkin's method of weighted residuals has been presented. The proposed numerical values and the predictions by experiment for the lateral buckling loads are to agree closely in the paper. The results from these comparisons show that the proposed method here is capable of predicting the lateral buckling of thin-walled members with openings. The fast convergence of the results indicates the numerical stability of the method. By the study, a very complex practical eigenvalue problem is transformed into a very simple one of solving only a linear equation with one variable.