• Title/Summary/Keyword: Shearing

Search Result 884, Processing Time 0.027 seconds

A Study of the Shearing Force as a Function Trim Punch Shape and Shearing Angle (트리밍펀치 형상과 전단 각에 따른 전단하중 특성에 관한 연구)

  • Yoo, C.K.;Won, S.T.
    • Transactions of Materials Processing
    • /
    • v.24 no.2
    • /
    • pp.77-82
    • /
    • 2015
  • By investigating the practical use of trim punch configurations for shearing of vehicle panels, the current study first reviews the shearing angle as part of the shearing die design. Based on this review, four different types of trim punch shapes (i.e., horizontal, slope, convex, and concave type) and shearing angles(i.e., 0.76°, 1.53°, 2.29°, 3.05°, 3.81°) were investigated. In order to conduct shearing experiments, four types of trim punch dies were made. The four trim punch dies were tested under various conditions. The experiments used the four trim punch shapes and the five shearing angles. The shearing force varied by shape and decreased from horizontal, slope, convex, to concave for the same shearing angle. The magnitude of shearing force showed differences between the convex and the concave shapes due to the influence of constrained shearing versus free shearing. The test results showed that compared to the horizontal trim punch shearing force, the decrease of the slope, convex, and concave shearing forces were 22.6% to 60.4%. Based on the results, a pad pressure of over 30% is suggested when designing a shearing die.

A study on the fine-shearing characteristics of a micro sheet metal under shearing force analysis (전단력 분석을 토한 미세박판의 정밀 전단 특성 연구)

  • 신용승;김병희;김헌영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.494-497
    • /
    • 2000
  • This paper presents the fine-shearing experimental investigation using brass sheets. Shearing including blanking, trimming, piercing, etc is one of the most frequently used processes in sheet metal manufacturing. In this study, an individual set of tooling was designed and fabricated to carry out experiment for shearing process. In order to investigate the effect of shearing surface correspond to die clearance, the profile of shearing surface was examined by using microscope. Futhermore, the relationship between shearing force and the profile of shearing surface was considered.

  • PDF

Shearing Interferometry: Recent Research Trends and Applications

  • Ki-Nam Joo;Hyo Mi Park
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.325-336
    • /
    • 2023
  • We review recent research related to shearing interferometry, reported over the last two decades. Shearing interferometry is categorized as azimuthal, radial, or lateral shearing interferometers by its fundamental principle to generate interference. In this review the research trends for each technique are provided, with a summary of experimental results containing theoretical background, the optical configuration, analysis, and perspective on its application fields.

Analysis of Shearing Characteristics for Vibration Damping Sheet Metals Bonded with Dissimilar Sheet Metals (이종 접합 제진 판재의 전단 가공 특성 분석)

  • Lee, Y.D.;Cha, Y.H.;Kim, K.P.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.235-238
    • /
    • 2009
  • This study is performed to investigate shearing characteristics for vibration damping sheet metals which are bonded with dissimilar sheet metals. A shearing tool set is designed and manufactured and shearing tests with the tool set are conducted at varying the magnitude of clearance in order to analyze the shearing characteristics. The shearing characteristics are analyzed for burr height and shape of sheared faces with respect to the magnitude of clearance between the punch and the die. The shearing test results demonstrate that optimum clearance is $8{\sim}12%$ of the sheet thickness at the shearing of the vibration damping sheet metals and the shearing direction has to be controlled deriving occurrence of the burr at the thick sheet of the vibration damping sheet metals.

  • PDF

Correlations among Shearing Force, Morphological Characteristic, Chemical Composition, and In situ Digestibility of Alfalfa (Medicago sativa L) Stem

  • Liu, L.;Yang, Z.B.;Yang, W.R.;Jiang, S.Z.;Zhang, G.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.4
    • /
    • pp.520-527
    • /
    • 2009
  • Alfalfa (Medicago sativa L) is a high-quality forage for ruminants and the main stem is the dominant morphological component contributing to the forage nutritive value in mature alfalfa forage. Shearing force, a fracturing property of plant stem, is an important indictor of forage value. The objectives of this study were to investigate the effects of morphological characteristic on shearing force, the relationship between shearing force and chemical composition, and the relationship between shearing force and in situ digestibility of alfalfa stem. The results showed that linear density (weight per unit length of stem) was more important than chemical composition in affecting shearing force. There was a positive relationship between lignin content and shearing force (r = 0.78). Correlations were not found between shearing force and other chemical components such as neutral detergent fiber (NDF), acid detergent fiber (ADF), cellulose and hemicelluloses. In situ digestibility (of dry matter and NDF) was related to shearing force. A negative correlation was found between shearing force and dry matter (DM) digestibility (r = -0.70), and there was also a negative correlation between shearing force and NDF digestibility (r = -0.87). When shearing force was standardized for stem diameter or stem linear density, the relationship between shearing force and digestibility was consistent regardless of stem diameter and stem linear density. Shearing force was significantly correlated with lignin content and in situ digestibility (of DM and NDF), and was a more direct indicator for estimating forage nutritive value related to animal performance, so it can be used to predict the forage value of alfalfa.

Prediction of Shearing Die Life for Producing a Retainer using FE Analysis (유한요소해석을 이용한 리테이너 전단 금형 수명예측)

  • Lee, I.K.;Lee, S.Y.;Lee, S.K.;Jeong, M.S.;Seo, P.K.;Lee, K.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.24 no.4
    • /
    • pp.264-271
    • /
    • 2015
  • In the current study, a method was proposed to quantitatively predict the wear and fatigue life of a shearing die in order to determine an effective replacement period for the die. The shearing die model of a retainer manufacturing process was used for the proposed method of quantitative life prediction. The retainer is produced through shearing steps, such as piercing and notching. The shearing die of the retainer is carefully controlled because the dimensional accuracy of the retainer is critical. The fatigue life for the shearing die was predicted using ANSYS considering S-N curves of STD11 and Gerber’s equation. The wear life for the shearing die was predicted using DEFORM-3D considering the Archard’s wear model. Experimental shearing of the retainer was conducted to verify the effectiveness of the proposed method for predicting die life. The fatigue failure of the shearing die was macroscopically measured. The wear depth was measured using a 3D coordinate measuring machine. The results showed that the wear and fatigue life in the FE analysis agree well with the experimental results.

Parameter Investigation of Burr Formation on Sheet Metal Shearing Process (미세박판 전단시의 버 발생 인자에 관한 연구)

  • Kim H. Y.;Kim B. H.;Shin Y. S.;Oh S. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.231-234
    • /
    • 2001
  • Shearing, including blanking, trimming, piercing, etc, is one of the most frequently used processes in sheet metal manufacturing. In this paper, an individual set of tooling with an in-die sensor was designed and precisely fabricated to carry out the experiment for the shearing process investigation. Through various experiments, it has been examined the influence of process parameters such as clearance, edge material properties and pad configuration. Since the tension between the part and the scrap increases when the clearance increases, the clearance should be selected properly in order to reduce the burr height. Also removal of the lower pad makes the sheared surface worse and the shearing system unstable. The shearing force increases when the clearance decreases and the friction of the tooling material decreases. Dynamic reaction force is also important to obtain the fine sheared surfaces.

  • PDF

Variation and Correlation of Shearing Force with Feed Nutritional Characteristics of Wheat Straw

  • Cui, X.M.;Yang, Z.B.;Yang, W.R.;Jiang, S.Z.;Zhang, G.G.;Liu, L.;Wu, B.R.;Wang, Z.F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.10
    • /
    • pp.1466-1473
    • /
    • 2013
  • This experiment was conducted to study the variation laws and correlations of shearing force and feed characteristics including morphological characteristic, chemical composition and in situ degradability of wheat straw. Feasibility of evaluating the nutritional value of wheat straws with shearing force values was analyzed in this study. Six hundred wheat straw plants (Jimai 22) were randomly selected and placed in a cool and ventilated place. Samples were collected in the 1st, 15th, 30th, 45th, 60th d after harvest to measure shearing force, morphological characteristic, nutritional composition. Rumen degradation of dry matter (DM), neutral detergent fiber (NDF) and acid detergent fiber (ADF) of wheat straws were determined by the nylon bags method. The results demonstrated that linear and quadratic effects of storage time on all the tested morphological characteristics were significantly correlative (p<0.01). As storage time goes on, all the tested nutrients and their rumen degradations of wheat straw was linearly (p<0.01) and quadratic (p<0.01) correlative except ADF content and rumen degradation of ADF. Significant correlations were determined in linear effect of shearing force on morphological characteristics (p<0.01), and linear density and diameter were a more sensitive predictor than stem thickness for shearing force. There were strong correlations between storage time and all the measured physical characteristics (shearing force, morphological characteristics and shearing force standardized by morphological characteristics) (p<0.01). Nutrition compositions were linearly correlative with shearing force and standardized shearing force (p<0.01). The linear correlation between rumen degradation of DM and NDF and shearing force and standardized shearing force were evident (p<0.01). In conclusion, shearing force, nutrition compositions and their rumen degradation of wheat straw were still dynamic with storage time after harvest. Correlation could be found between shearing force and nutritional characteristics of wheat straw. Nutrient content, morphological index and rumen degradation of DM and NDF could be predicted by changes in shearing force. Shearing force should be applied according to a standardized storage time when it is used to forecast the feed value of wheat straws.

A Study on The Burr Formation in Sheet Metal Shearing (박판 전단시의 버 형성에 관한 연구)

  • Shin, Yong-Seung;Kim, Byeong-Hee;Kim, Heon-Young;Oh, Soo-Ik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.166-171
    • /
    • 2002
  • The objective of this paper is to investigate the effect of clearance and the configuration of die system on burr formation by FEM analysis and experimental tests. Compared with casting, forging and machining, shearing has been known, especially in heavy or mass-production industries, as a very economical and fast way to obtain the desired shape Recently, the shearing process becomes widely used in the small and light electronic component manufacturing industries. When shearing a part of sheet metal, the burr formed on the cutting edge is usually unavoidable. The burr would not only degrade the precision of products but also causes additional cost for the deburring process. In this paper, the influence of shearing parameters such as clearance and configurations of the lower pad (ejector) on burr formation is investigated by using the experimental and numerical approach. From the experimental results, it has been shown that the more narrow clearance gives the smaller burr height and the higher shearing forces. The removal of lower holder also makes the sheared surface integrity and the dimensional accuracy become worse. The FEM results (using DEFORM-2D) show good agreement with the experimental results.

A Study on Mechanical Shearing Process for Tailored Blank Welding (테일러드블랭크 용접을 위한 전단 공정 연구)

  • 유병길;이경돈
    • Journal of Welding and Joining
    • /
    • v.17 no.2
    • /
    • pp.66-75
    • /
    • 1999
  • Weld bead quality in tailored blank(TB) is critically affected by edge preparation of sheets. The edge quality of prepared sheets for TB can be classified into straightness and the cross section quality of sheared plane such as a ratio of shear face, shear plane angle, etc. In order to have a good edg quality for butt-welding sheets, precision shearing will be recommended. In this paper, the feasibility of a conventional mechanical shearing as the edge preparation for tailored blanks is studyied. It reveals that fine shearing may not be the unique solution as it is generally accepted. To obtain the good shearing condition with a conventional mechanical shearing, experiments were carried out using Tahuchi method. The major parameters affecting a sheared contour are the clearance between upper blade and lower blade, and shear angle. The optimal shearing condition yields a very good straightness along the entire length of the cut, which gives a butt joint gap less than 10% of the base material thickness. The good cross section of sheared plane is also achieved in the optimal shearing condition such as a ratio of the shear face above 65%, a cross section's shear plane angle above 85%, little burr, which is providing finally good weld beads.

  • PDF