• Title/Summary/Keyword: Shear-horizontal wave

Search Result 90, Processing Time 0.029 seconds

Dynamic impedance of a 3×3 pile-group system: Soil plasticity effects

  • Gheddar, Kamal;Sbartai, Badreddine;Messioud, Salah;Dias, Daniel
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.377-386
    • /
    • 2022
  • This paper considers dynamic impedance functions and presents a detailed analysis of the soil plasticity influence on the pile-group foundation dynamic response. A three-dimensional finite element model is proposed, and a calculation method considering the time domain is detailed for the nonlinear dynamic impedance functions. The soil mass is modeled as continuum elastoplastic solid using the Mohr-Coulomb shear failure criterion. The piles are modeled as continuum solids and the slab as a structural plate-type element. Quiet boundaries are implemented to avoid wave reflection on the boundaries. The model and method of analysis are validated by comparison with those published on literature. Numerical results are presented in terms of horizontal and vertical nonlinear dynamic impedances as a function of the shear soil parameters (cohesion and internal friction angle), pile spacing ratio and frequencies of the dynamic signal.

Influence of microstructure, heterogeneity and internal friction on SH waves propagation in a viscoelastic layer overlying a couple stress substrate

  • Sharma, Vikas;Kumar, Satish
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.703-716
    • /
    • 2016
  • In this paper, we have investigated shear horizontal wave propagation in a layered structure, consisting of granular macromorphic rock (Dionysos Marble) substrate underlying a viscoelastic layer of finite thickness. SH waves characteristics are affected by the material properties of both substrate and the coating. The effects of microstructural parameter "characteristic length" of the substrate, along with heterogeneity, internal friction and thickness of viscoelastic layer are studied on the dispersion curves. Dispersion equation for SH wave is derived. Real and damping phase velocities of SH waves are studied against dimensionless wave number, for different combinations of various parameters involved in the problem.

Field Experiment Generating Shear Waves by Using french Method (트렌치를 이용한 S 파 발생 현장실험)

  • Lee, Doo-Sung;Kim, Hyoun-Gyu
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.4
    • /
    • pp.209-214
    • /
    • 1999
  • A field experiment generating shear waves by trench method was conducted at two places in Taejun area. We were able to separate the P- and S-waves by summing and subtracting the vertical and horizontal component of the data recorded at a three component downhole geophone in the borehole. The analysis of the records revealed that the shear waves were polarized to NS and EW directions. The faster shear waves were polarized to NS direction. The NS direction generally agrees with the dominant joints direction observed from the cores collected from the borehole.

  • PDF

Application of a Fiber Fabry-Pérot Interferometer Sensor for Receiving SH-EMAT Signals (SH-EMAT의 신호 수신을 위한 광섬유 패브리-페롯 간섭계 센서의 적용)

  • Lee, Jin-Hyuk;Kim, Dae-Hyun;Park, Ik-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.2
    • /
    • pp.165-170
    • /
    • 2014
  • Shear horizontal (SH) waves propagate as a type of plate wave in a thin sheet. The dispersion characteristics of SH waves can be used for signal analysis. Therefore, SH-waves are useful for monitoring the structural health of a thin-sheet-structure. An electromagnetic acoustic transducer (EMAT), which is a non-contact ultrasonic transducer, can generate SH-waves easily by varying the shape and array of magnets and coils. Therefore, an EMAT can be applied to an automated ultrasonic testing system for structural health monitoring. When used as a sensor, however, the EMAT has a weakness in that electromagnetic interference (EMI) noise can occur easily in the automated system because of motors and electric devices. Alternatively, a fiber optic sensor works well in the same environment with EMI noise because it uses a light signal instead of an electric signal. In this paper, a fiber Fabry-P$\acute{e}$rot interferometer (FFPI) was proposed as a sensor to receive the SH-waves generated by an EMAT. A simple test was performed to verify the performance of the FFPI sensor. It is thus shown that the FFPI can receive SH-wave signals clearly.

The Feasibility Study on a High-Temperature Application of the Magnetostrictive Transducer Employing a Thin Fe-Co Alloy Patch

  • Heo, Tae-Hoon;Park, Jae-Ha;Ahn, Bong-Young;Cho, Seung-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.3
    • /
    • pp.278-286
    • /
    • 2011
  • The on-line monitoring for the wall thinning in secondary system has been considered one of main issues for the safety of nuclear power plants. To establish the on-line monitoring technique for the pipe wall thinning, the development of the ultrasonic transducer working in high-temperature is very important. In this investigation, the magnetostrictive transducer is concerned for high temperature condition up to $300^{\circ}C$. The magnetostrictive transducer has many advantages such as high working temperature, durability, cost-effectiveness, and shear waves, most of all. A thin Fe-Co alloy patch whose Curie temperature is over $900^{\circ}C$ was employed as a ferromagnetic material for magnetostriction. Wave transduction experiments in various temperature were carried out and the effect of bias magnets was considered together with the dry coupling performance of the transducer. From experimental results, consequently, it was found that the magnetostrictive transducer works stable even in high temperature up to $300^{\circ}C$ and can be a promising method for the on-line monitoring of the wall thinning in nuclear power plants.

Establishment and Verification of SPT-uphole method for Evaluating Shearwave Velocity of a site (지반의 전단파 속도 도출을 위한 SPT 업홀 기법의 확립 및 검증)

  • Bang, Eun-Seok;Kim, Jung-Ho;Seo, Won-Seok;Kim, Dong-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.142-152
    • /
    • 2008
  • SPT-Uphole method was introduced for the evaluation of near subsurface shear wave velocity (Vs) profile. In SPT-Uphole method, SPT (Standard Penetration Test) which is common in geotechnical site investigation was used as a source and several surface geophones in line were used as receivers. 1D shearwave velocity profile can be obtained in the manner of downhole method, Vs distribution map which is the triangular shape around the boring point can be developed by tomography inversion. To obtain the exact travel time information of shear wave component, a procedure using the magnitude summation of vertical and horizontal components was used based on the evaluation of particle motion at the surface. It was verified that proposed method could give reliable Vs distribution map through the numerical study using the FEM (Finite Element Method) model. Finally, SPT-Uphole method was performed and the feasibility of proposed method was verified in the field.

  • PDF

A Case Study of Sediment Transport on the Seabed due to Wave and Current Velocities

  • Choi, Byoung-Yeol;Lee, Sang-Gil;Kim, Jin-Kwang;Oh, Jin-Soo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.3
    • /
    • pp.99-111
    • /
    • 2016
  • Seabed affected by scouring, sedimentation, and siltation occurrences often cause exposure, which induces risks to existing structures or crude oil or gas pipeline buried subsea. In order to prevent possible risks, more economical structure installation methodology is proposed in this study by predicting and managing the risk. Also, the seabed does not only consist of sandy material, but clayey soil is also widespread, and the effect of undrained shear strength should be considered, and by cyclic environmental load, pore water pressure will occur in the seabed, which reduces shear strength and allows particles to move easily. Based on previous research regarding sedimentation or erosion, the average value of external environmental loads should be applied; for scouring, a 100-year period of environmental conditions should be applied. Also, sedimentation and erosion are mainly categorized by the bed load and suspended load; also, they are calculated as the sum of bed load and suspended load, which can be obtained from the movement of particles caused by sedimentation or erosion.

Dynamic and structural responses of a submerged floating tunnel under extreme wave conditions

  • Jin, Chungkuk;Kim, MooHyun
    • Ocean Systems Engineering
    • /
    • v.7 no.4
    • /
    • pp.413-433
    • /
    • 2017
  • The dynamic and structural responses of a 1000-m long circular submerged floating tunnel (SFT) with both ends fixed under survival irregular-wave excitations are investigated. The floater-mooring nonlinear and elastic coupled dynamics are modeled by a time-domain numerical simulation program, OrcaFlex. Two configurations of mooring lines i.e., vertical mooring (VM) and inclined mooring (IM), and four different buoyancy-weight ratios (BWRs) are selected to compare their global performances. The result of modal analysis is included to investigate the role of the respective natural frequencies and elastic modes. The effects of various submergence depths are also checked. The envelopes of the maximum/minimum horizontal and vertical responses, accelerations, mooring tensions, and shear forces/bending moments of the entire SFT along the longitudinal direction are obtained. In addition, at the mid-section, the time series and the corresponding spectra of those parameters are also presented and analyzed. The pros and cons of the two mooring shapes and high or low BWR values are systematically analyzed and discussed. It is demonstrated that the time-domain numerical simulation of the real system including nonlinear hydro-elastic dynamics coupled with nonlinear mooring dynamics is a good method to determine various design parameters.

Exact Solution on the Anti-symmetric Responses of Ships having Uniform Sectional Properties with Hydro-elasticity (균일단면 선박의 유탄성 수평응답에 대한 해석해)

  • ;;A. Korobkin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.4
    • /
    • pp.45-52
    • /
    • 2004
  • Exact solution on the anti-symmetric response of ships having uniform sectional properties in waves is derived. Boundary value problem consisted of Timoshenko beam equation and free-free end condition is solved analytically. The responses are assumed as linear and wave loads are calculated by using strip method. Horizontal bending moment, shear force and torsional moment are calculated. The developed analysis model is used for the benchmark test of the numerical codes in this problem. Also the application on the preliminary design of barge-like ships and VLFS (Very Large Floating Structure) is expected

Evaluation of Stiffness Profile for a Subgrade Cross-Section by the CAP(Common-Array-Profiling)-SASW Technique (CAP SASW 기법에 의한 지반단면의 전단강성구조 평가)

  • Joh Sung-Ho;Jang Dae-Woo;Kang Tae-Ho;Lee Il-Wha
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.71-81
    • /
    • 2005
  • Surface wave techniques were initially based on 2-D plane waves and were later improved to the techniques based the 3-D based cylindrical waves. However, body-wave interference, near-field effect and limited technology in surface wave measurements restricted the use of 3-D cylindrical waves to the 1-D evaluation of subgrade stiffness. In this study, by the numerical simulation of SASW measurements, the dispersion properties of surface waves including vertical, horizontal Rayleigh waves and Love waves were thoroughly investigated in the 3-D domain, and a new filter criteria to minimize the near-field effect was established, which led to CAP (common-array-profiling)-SASW technique. The CAP-SASW technique enabled the evaluation of subgrade stiffness fur a specific subgrade segment, not for a whole section of measurement array. Therefore, a contour plot of subgrade stiffness with a ground-truth quality can be obtained by the CAP-SASW technique. The procedure proposed in this study was verified by comparing the shear-wave velocity profiles with the shear-wave velocity profiles of downhole testing at two geotechnical sites.