• Title/Summary/Keyword: Shear span to depth ratio

Search Result 228, Processing Time 0.02 seconds

Shear behaviour of RC beams retrofitted using UHPFRC panels epoxied to the sides

  • Al-Osta, Mohammed A.
    • Computers and Concrete
    • /
    • v.24 no.1
    • /
    • pp.37-49
    • /
    • 2019
  • In this study, the shear behaviour of reinforced concrete (RC) beams that were retrofitted using precast panels of ultra-high performance fiber reinforced concrete (UHPFRC) is presented. The precast UHPFRC panels were glued to the side surfaces of RC beams using epoxy adhesive in two different configurations: (i) retrofitting two sides, and (ii) retrofitting three sides. Experimental tests on the adhesive bond were conducted to estimate the bond capacity between the UHPFRC and normal concrete. All the specimens were tested in shear under varying levels of shear span-to-depth ratio (a/d=1.0; 1.5). For both types of configuration, the retrofitted specimens exhibited a significant improvement in terms of stiffness, load carrying capacity and failure mode. In addition, the UHPFRC retrofitting panels glued in three-sides shifted the failure from brittle shear to a more ductile flexural failure with enhancing the shear capacity up to 70%. This was more noticeable in beams that were tested with a/d=1.5. An approach for the approximation of the failure capacity of the retrofitted RC beams was evolved using a multi-level regression of the data obtained from the experimental work. The predicted values of strength have been validated by comparing them with the available test data. In addition, a 3-D finite element model (FEM) was developed to estimate the failure load and overall behaviour of the retrofitted beams. The FEM of the retrofitted beams was conducted using the non-linear finite element software ABAQUS.

A Study on the Shear Behavior of Recycled Aggregate Reinforced Concrete Beams without Stirrups (전단보강이 없는 순환골재 철근콘크리트 보의 전단거동에 관한 연구)

  • Lee, Jung-Hoon;Kim, Woo-Suk;Baek, Seung-Min;Kang, Thomas H.K.;Kwak, Yoon-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.4
    • /
    • pp.389-400
    • /
    • 2013
  • Little investigations have been carried out to study the shear behaviors of RC beams with recycled aggregates. So, this experiment investigates the shear performance and suggests the possible application of Recycled Concrete Aggregate (RCA) for building structures. In general, shear strength of reinforced concrete beam without stirrups is dependent on the compressive strength of concrete, the longitudinal steel ratio, and the shear span-to-depth ratio. In this study, total 28 recycled aggregate concrete beams without shear reinforcement were tested by two-point load and all beams were singly reinforced. The variables studied in this investigation are shear span-to-depth ratios (a/d=2, 3 and 4), RCA replacement ratios (0, 15, 30 and 50%) and longitudinal steel ratios (0.80, 1.27 and 1.84%). The designed concrete compressive strength with a 30 MPa is used. This research will play an important role toward the establishment of the structural design standard for RCA concrete.

Analysis of Strengthened Concrete Deep Beam Using Strut-Tie Model (보강된 콘크리트 깊은 보의 스트럿-타이 모델 해석)

  • 곽형욱;송하원;변근주;지호석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.817-822
    • /
    • 2002
  • In this paper, the strengthening analysis by strut-tie model for strengthened shear failed RC deep beam by the so-called the Steel Clamping Unit (SCU), which is a strengthening equipment, is carried out. The analysis considers the span-to-depth ratio, the existence of prestressing and stirrup, the shape of shear crack, and the strengthening position of the SCU. Based on analytical results, optimized strengthening analysis and design are carried out by investigating the behavior of the strengthened deep beams. The comparison between analytical results and experimental results shows that optimum strengthening effect by the SCU can be obtained when compressive strut zone created by SCU is away from major shear crack of the beam as far as possible.

  • PDF

Estimation of Flexural and Shear Strength for Steel Fiber Reinforced Flexural Members without Shear Reinforcements (전단보강이 없는 강섬유보강 콘크리트 휨부재의 휨 및 전단강도의 평가)

  • Oh, Young-Hun;Kim, Jeong-Hae
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.257-267
    • /
    • 2008
  • Results of seventy-seven specimens tested by this study and previous research were collected and evaluated to propose the flexural strength and shear strength for flexural members with steel fiber concrete. For strength evaluation, structural parameters such as compressive strength, steel fiber content, tensile reinforcement ratio, and shear span to effective depth ratio are involved. The proposed equations for flexural and shear strength are regarded to give a good prediction for the strength of steel fiber reinforced composite and/or RC beams to compare with equations by previous researchers. Especially, the proposed shear strength equation in this study shows the lowest the mean value, the coefficient of variation and the error ratio among predictions by several equations. Therefore, equations for shear strength and flexure strength, which are proposed in this study are to be useful measure to predict the actual behavior and failure mode of steel fiber reinforced composite beams.

Shear Behavior of Reinforced Concrete Deep Beams with Web Openings (개구부를 갖는 철근콘크리트 깊은 보의 전단거동)

  • 이진섭;김상식
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.619-628
    • /
    • 2001
  • In building construction, openings of the story-height deep beams are usually required for accessibility and service lines such as air conditioning ducts, drain pipes and electric units. It is known that the main parameters affecting the load bearing capacity of deep beams with web openings are size, shape, location and reinforcements of openings. However, there have been no pertinent theories and national design codes for predicting ultimate shear strength of reinforced concrete deep beams with web openings. In this study, the shear behavior of simply supported reinforced concrete deep beams with web openings subject to concentrated loads has been scrutinized experimentally. A total of 34 specimens, the geometry of openings, its reinforcements and shear span to depth ratio, being taken as the experimental variables, has been cast and tested in the laboratory. The effects of these structural parameters on the shear strength and crack initiation and propagation have been carefully checked and analyzed. From the tests, it has been observed that the failures of all specimens were due to shear mechanism and the ultimate strength of specimens varies according to the location of openings, by which the formation of compression struts between the loading points and supports are deterred. All of the test results of specimens have been compared with the formulas proposed by previous researchers. The results were closely coincident with the formulas given by Ray and Kong's equation except for some X series specimens having a larger dimension of openings beyond the geometric limits of proposed equations.

Design and Safety Control in Construction Stage of Prestressed Concrete Box Girder Bridge with Corrugated Steel Web (파형강판 PSC 박스거더 교량의 설계 및 시공중 안전관리)

  • Kim, Kwang-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.2
    • /
    • pp.87-97
    • /
    • 2008
  • The Ilsun Bridge is the world's longest box girder bridge(801m) with corrugated steel webs and has the widest width($21.2{\sim}30.9m$: tri-cellular cross section) among these kinds of composite girder bridges. It has fourteen spans(50m, 10 at 60m, 50m, 2 at 50.5m) where twelve spans are erected by the incremental launching method and two spans by full staging method. Special topics related to the structural safety of prestressed concrete box girder bridge with corrugated steel web in construction stage and service were reviewed. Investigations focus on the span-to-depth ratio, shear stress of corrugated steel webs and optimization of tile length of steel launching nose. The span-to-depth ratio of Ilsun bridge has been found to be well-planned while the corrugated steel web has been designed highly conservative and it has been observed that the conventional nose-deck interaction equation do not fit well with corrugated steel web bridges. As a result, detailed construction stage analysis was performed to check the stress levels and the safety of preceding design conditions. Finally, from the design review of Ilsun bridge, this study suggests optimal design issues which should be of interest in designing a prestressed concrete box girder bridge with corrugated steel webs.

Effect of Diaphragm Ratio by Load Condition and Behavior in Composite Structures of Sandwich System (샌드위치식 복합구조체에서 하중조건.거동특성에 따른 격벽간격비의 영향)

  • 정연주;정광회;김병석;박성수;황일선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.297-302
    • /
    • 2000
  • This paper presents the effect of diaphragm spacing ratio(depth to span) on behavior and capacity of composite steel-concrete structures of sandwich system. Numerical analysis has been performed variety diaphragm ratio, behavior and load condition. As a results of this study, in case of shear behavior and concentrated load, the capacity of structure such as yielding and ultimate load improve according to diaphragm ratio because of concrete confining effect by steel plate and stress redistribution by diaphragm. But in case of bending behavior or uniform load, it proved that diaphragm ratio don't influence on behavior and capacity of composite structures of sandwich system.

  • PDF

Experimental Study on Shear Performance of RC Beams with Electric Arc Furnace Oxidizing Slag Aggregates (전기로 산화슬래그 골재를 사용한 RC 보의 전단 성능에 관한 실험적 연구)

  • Lee, Yong Jun;Jeong, Chan Yu;Lee, Bum Sik;Kim, Sang Woo;Kim, Kil Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.40-48
    • /
    • 2012
  • This study evaluates the shear performance of reinforced concrete beams with electric arc furnace oxidizing slag aggregates generated from iron manufacture. A total of six simple supported specimens were cast and tested in shear. The main test variables were the type of aggregates and the amount of shear reinforcements. The specimens under four point loading had a shear span-to-depth ratio of 2.5 and a rectangular section with a width of 200mm and an effective depth of 300mm. Existing equations to predict the shear strength of the specimens were used in this study. Furthermore, a finite element analysis using shear analytical model was performed to trace the shear behavior of the specimens with electric arc furnace oxidizing aggregates. From the test results, the shear performance of specimens with electric arc furnace oxidizing aggregates is similar to that of specimens with natural aggregates.

Flexural Behavior of High-Strength Concrete Beams Confined with Stirrups in Pure Bending Zone

  • Jang, Il-Young;Park, Hoon-Gyu;Kim, Yong-Gon;Kim, Sung-Soo;Kim, Jong-Hoe
    • International Journal of Concrete Structures and Materials
    • /
    • v.3 no.1
    • /
    • pp.39-45
    • /
    • 2009
  • The purpose of this study is to establish flexural behavior of high-strength concrete beams confined in the pure bending zone with stirrups. The experiment was carried out on full-scale high-strength reinforced concrete beams, of which the compressive strengths were 40 MPa and 70 MPa. The beams were confined with rectangular closed stirrups. Test results are reviewed in terms of flexural capacity and ductility. The effect of web reinforcement ratio, longitudinal reinforcement ratio and shear span to beam depth ratio on ductility are investigated. The analytic method is based on finite element method using fiber-section model, which is known to define the behavior of reinforced concrete structures well up to the ultimate state and is proven to be valid by the verification with the experimental results above. It is found that confinement of concrete compressive regions with closed stirrups does not affect the flexural strength but results in a significantly increased ductility. Moreover, the ductility tends to increase as the quantity of stirrups increases by reducing the spacing of stirrups.

Prediction of Shear Strength in High-Strength Concrete Beams without Web Reinforcement Considering Size Effect (크기효과를 고려한 복부보강이 없는 고강도 콘크리트 보의 전단강도 예측식의 제안)

  • Bae, Young-Hoon;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.820-828
    • /
    • 2003
  • Recent research has indicated that the current ACI shear provision provides unconservative predictions for large slender beams and beams with low level of longitudinal reinforcement, and conservative results for deep beams. To modify some problems of ACI shear provision, ultimate shear strength equation considering size effect and arch action to compute shear strength in high-strength concrete beams without stirrups is presented in this research. Three basic equations, namely size reduction factor, rho factor, and arch action factor, are derived from crack band model of fracture mechanics, analysis of previous some shear equations for longitudinal reinforcement ratio, and concrete strut described as linear prism in strut-tie model deep beams. Constants of basic equations are determined using statistical analysis of previous shear testing data. To verify proposed shear equation for each variable, effective depth, longitudinal reinforcement ratio, concrete compressive strength and shear span-to-depth ratio, about 300 experimental data are used and proposed shear equation is compared with ACI 318-99 code, CEB-FIP Model code, Kim &Park's equation and Zsutty's equation. The proposed shear equation is not only simpler than other shear equations, it is but also shown to be economical predictions and reasonable safety margin. Hence proposed shear strength equation is expected to be applied to practical shear design.