• 제목/요약/키워드: Shear localization

검색결과 72건 처리시간 0.051초

Redistribution of Intracellular Calcium Stores with Shear Stress-induced Cytoskeleton Organization in Human Endothelial Cell

  • 정찬일;장현아;장준근;한동철;민병구
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1996년도 춘계학술대회
    • /
    • pp.97-99
    • /
    • 1996
  • Intracellular gradients of the free calcium concentration are thought to be critical for the localization of functional responses within a cell. The mechanism of mechanotransduction may be associated with the localized accumulation of calcium stores for shear stress-exposed endothelial cells. The distribution of the calcium stores and the formation of the stress fibers were investigated by the indirect double immunofluorescent staining method with the calreticulin antibody and rhodamine phalloidin under flow condition. The shear stress of steady flow reorganized the cytoskeleton structure including the bundling and translocation to focal contacts. The calcium stores translocated from the cytoplasm to the focal contacting area. Consequently. accumulation of the calcium stores may participate in the shear stress-induced cytoskeleton organization of endothelial cells.

  • PDF

평면변형률 시험에서 이미지 해석을 통한 사질토의 전단면 특성 평가 (Assessment of Shear Band Characteristics in Granular Soils Using Digital Image Analysis Technique for Plane Strain Tests)

  • 장의룡;정영훈;김준영;정충기
    • 한국지반공학회논문집
    • /
    • 제27권4호
    • /
    • pp.51-65
    • /
    • 2011
  • 전단면의 형성과 전단면에 집중되어 국부적으로 발생하는 변형은 지반 구조물의 거동과 안정성에 크게 영향을 미치기 때문에 전단면의 특성을 파악하는 것은 매우 중요하다. 본 연구에서는 전단면의 형성 및 발달 패턴 등을 실험적으로 규명하기 위하여 입도분포가 다른 세 가지 시료에 대하여 밀도와 구속압 조건을 변화시켜가면서 평면변형률 시험을 수행하였다. 전단 중에 이미지를 촬영하고, 전단 초기에서부터 한계 상태까지 하중 단계에 따라서 이미지 해석을 수행하여 시료 내부의 변형을 측정하였다. 이를 바탕으로 전단면이 발생하기 시작하는 단계를 확인하였고, 이 단계부터 응력 연화 단계를 지나 한계 상태에 이를 때까지의 전단면의 특성을 기울기와 두께의 관점에서 평가하였다. 또한, 두께를 합리적으로 산정하기 위하여 통계적인 해석 절차도 마련하였다.

전단띠형성에 의한 접합판의 성형한계 연구 (Study of Forming Limit of Bonded Sheet Metals due to Shear Band Localization)

  • 정태훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.778-782
    • /
    • 1996
  • By the use of a similar numerical method as that in the previous paper, the forming limit strain of bonded sheet metals is investigated, in which the FEM is applied and J2G(J2-Gotoh's corner theory) is utilized as the plasticity constitutive equation. Bonded two-layer sheets and sheets bonded with dissimilar sheets on both surface planes are stretched in a plane-strain state, with various work-hardening exponent n-values and thicknesses of each layer. Processes of shear-band formation in such composite sheets are clearly illustrated. It is concluded that, in the bonded state, the higher limiting strain of one layer is reduced due to the lower limiting strain of the other layer and vice versa, and does not necessarily obey the rule of linear combination of the limiting strain of each layer weighted according thickness.

  • PDF

Damage detection of shear buildings using frequency-change-ratio and model updating algorithm

  • Liang, Yabin;Feng, Qian;Li, Heng;Jiang, Jian
    • Smart Structures and Systems
    • /
    • 제23권2호
    • /
    • pp.107-122
    • /
    • 2019
  • As one of the most important parameters in structural health monitoring, structural frequency has many advantages, such as convenient to be measured, high precision, and insensitive to noise. In addition, frequency-change-ratio based method had been validated to have the ability to identify the damage occurrence and location. However, building a precise enough finite elemental model (FEM) for the test structure is still a huge challenge for this frequency-change-ratio based damage detection technique. In order to overcome this disadvantage and extend the application for frequencies in structural health monitoring area, a novel method was developed in this paper by combining the cross-model cross-mode (CMCM) model updating algorithm with the frequency-change-ratio based method. At first, assuming the physical parameters, including the element mass and stiffness, of the test structure had been known with a certain value, then an initial to-be-updated model with these assumed parameters was constructed according to the typical mass and stiffness distribution characteristic of shear buildings. After that, this to-be-updated model was updated using CMCM algorithm by combining with the measured frequencies of the actual structure when no damage was introduced. Thus, this updated model was regarded as a representation of the FEM model of actual structure, because their modal information were almost the same. Finally, based on this updated model, the frequency-change-ratio based method can be further proceed to realize the damage detection and localization. In order to verify the effectiveness of the developed method, a four-level shear building was numerically simulated and two actual shear structures, including a three-level shear model and an eight-story frame, were experimentally test in laboratory, and all the test results demonstrate that the developed method can identify the structural damage occurrence and location effectively, even only very limited modal frequencies of the test structure were provided.

Numerical simulations of fluid mechanical interactions between two abdominal aortic branches

  • Kim, Taedong;Taewon Seo;Abdul.I. Barakat
    • Korea-Australia Rheology Journal
    • /
    • 제16권2호
    • /
    • pp.75-83
    • /
    • 2004
  • The purpose of the present study is to investigate fluid mechanical interactions between two major abdominal aortic branches under both steady and pulsatile flow conditions. Two model branching systems are considered: two branches emerging off the same side of the aorta (model 1) and two branches emerging off the opposite sides of the aorta (model 2). At higher Reynolds numbers, the velocity profiles within the branches in model 1 are M-shaped due to the strong skewness, while the loss of momentum in model 2 due to turning effects at the first branch leads to the absence of a reversed flow region at the entrance of the second branch. The wall shear stresses are considerably higher along the anterior wall of the abdominal aorta than along the posterior wall, opposite the celiac-superior mesenteric arteries. The wall shear stresses are higher in the immediate vicinity of the daughter branches. The peak wall shear stress in model 2 is considerably lower than that in the model 1. Although quantitative comparisons of our results with the physiological data have not been possible, our results provide useful information for the localization of early atherosclerotic lesions.

평면변형률 시험에서 디지털 이미지 해석을 통한 정규압밀 점성토의 파괴거동 분석 (Failure Mechanism Evaluation in Normally Consolidated Cohesive Soils by Plane Strain Test with Digital Image Analysis)

  • 곽태영;김준영;정충기
    • 한국지반공학회논문집
    • /
    • 제32권3호
    • /
    • pp.49-60
    • /
    • 2016
  • 일반적으로 흙의 파괴는 전단 변형이 집중되는 영역인 전단면의 형성과 발달에 의해 발생한다. 정규압밀 점성토의 파괴거동을 확인하기 위해 시료 내부의 변형거동 분포에 대해 평가가 필요하다. 본 연구에선 재성형된 카올리나이트 시료에 대해 평면변형률 시험을 수행하였으며, 전단 과정에서 일정 변형률 간격에서 디지털 이미지 해석을 수행하였다. 시험 결과로 도출된 응력-변형률 결과를 통해 4개의 단계를 결정하여 시료의 변형거동과 전단면 특성을 평가하였다.

NiAl/Ni 미세적층복합재료의 고속변형거동 (High Strain-rate Deformation Behavior of NiAl/Ni Micro-laminated Composites)

  • 김희연;김진영;정동석;;홍순형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.237-240
    • /
    • 2004
  • High strain-rate deformation behavior of NiAl/Ni micro-laminated composites was characterized by split hopkins on pressure bar(SHPB). When the strain rate increased, the compressive stress of micro-laminated composites were increased a little. When the intermetallic volume fraction increased, the compressive stress of micro-laminated composites increased linearly irrespective of strain rate. Absorbed energy during the quasi-static and SHPB tests was calculated from the integrated area of stress-strain curve. Absorbed energy of micro-laminated composites deviated from the linearity in terms of the intermetallic volume fraction but merged to the value of intermetallic as the strain rate increased. This was due to high tendency of intermetallic layer for the localization of shear deformation at high strain rate. Microstructure showing adibatic shear band(ASB) confirmed that the shear strain calculated from the misalignment angle of each layer increased and ASB width decreased when the intermetallic volume fraction. Simulation test impacted by tungsten heavy alloy cylinder resulted that the absorbed energies multiplied by damaged volume of micro-laminated composites were decreased as the intermetallic volume fraction increased. Fracture mode were changed from delamination to single fracture when the intermetallic volume fraction and this results were good matched with previous results[l] obtained from the fracture tests.

  • PDF

Ti 합금의 고속가공시 밀링특성에 관한 연구 (High Speed Milling of Titanium Alloy)

  • Chen, Ming;Lee, Young-Moon;Yang, Seung-Han;Jang, Seung-Il
    • 한국공작기계학회논문집
    • /
    • 제12권5호
    • /
    • pp.34-39
    • /
    • 2003
  • The paper will present chip formation mechanism and surface integrity generation mechanism based on the systematical experimental tests. Some basic factors such as the end milling cutter tooth number, cutting forces, cutting temperature, cutting vibration the chip status, the surface roughness, the hardness distribution and the metallographic texture of the machined surface layer are involved. The chip formation mechanism is typical thermal plastic shear localization at high cutting speed with less number of shear ribbons and bigger shear angle than that at low speed, which means lack of chip deformation. The high cutting speed with much more cutting teeth will be beneficial to the reduction of cutting forces, enlarge machining stability mot depression of temperature increment anti-fatigability as well as surface roughness. The burrs always exist both at low cutting speed and at high cutting speed. So the deburring process should be arranged for milling titanium alloy in my case.

강섬유 보강 초고성능 콘크리트(UHPFRC) I형 보의 전단 강도 (Shear Strength of Ultra-High Performance Fiber-Reinforced Concrete(UHPFRC) I-shaped Beams without Stirrup)

  • 이지형;홍성걸
    • 콘크리트학회논문집
    • /
    • 제29권1호
    • /
    • pp.53-64
    • /
    • 2017
  • 강섬유 보강 초고성능 콘크리트(UHPFRC)는 높은 압축강도 뿐 아니라 강섬유 보강에 의한 뛰어난 응력분산효과로 인해 높은 인장강도를 가지며, 미세균열의 확장을 통해 균열 후에도 경화거동을 하여 구조부재가 안정적으로 외력에 저항하도록 한다. 본 연구에서는 UHPFRC 재료 인장강도를 정의함에 있어 노치가 있는 휨실험과 직접인장실험을 비교하여 실험법 및 결과 분석의 장단점을 알아보았다. I-형 보의 전단부재실험은 복부의 면내전단거동을 알아보기 위하여 전단 경간비, 유효높이, 재료인장강도를 변수로 계획하였다. 실험결과를 통해 전단보강근이 없는 UHPFRC I형 보의 균열발생 이후 전단거동의 응력 재분배효과를 정량적으로 판단하고, 균열 후 거동을 기존 전단 강도식이 잘 반영하고 있는지 검토하였다. 전단철근 보강이 없는 UHPFRC 전단부재의 경우 파괴모드는 사인장 파괴로 동일하였고, 이러한 파괴모드를 가지는 부재는 전단 경간비와 유효높이에 크게 영향을 받게 되어 부재 설계 시 이러한 변수에 대한 고려가 필요한 것으로 나타났다.