• Title/Summary/Keyword: Shear load

Search Result 2,630, Processing Time 0.023 seconds

Performance Test of Wall to Wall Modular Structure Joint for Near-surface Transit (저심도 모듈식 구조체의 벽체간 연결 조인트 성능검증 실험)

  • Lee, Jong Soon;Kim, Hee Sung;Lee, Sung Hyung;Lee, Jun Kyoung
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.3
    • /
    • pp.261-269
    • /
    • 2015
  • To overcome the weaknesses of viaduct bridges and the non-economic efficiency of underground LRT, the study of near-surface railway systems is in progress. To apply a box structure to the low depth transit, a connection joint to precast modules are very important when applying precast modular structures to replace temporary structures. In this study, wall to wall connections were applied in diverse cases such as rebar connections, guiding structures that were used to fit the verticality of precast walls during construction, and non-reinforcement structures used only for waterstop. Experimental performance verification was carried out for the bending, shear and splitting of the wall to wall connection. Precision of construction joints between wall to wall was identified as a factor that influenced the structural performance of the precast wall. A structure that can serve as a guide during the vertical insertion of a wall is confirmed for the most suitable case, but it will be necessary to modify this structure for detailed cases.

Experimental Verification for the Control Performance of a TLD by Using Real-Time Hybrid Shaking Table Testing Method (실시간 하이브리드 진동대 실험법을 이용한 TLD 제어성능의 실험적 검증)

  • Lee, Sung-Kyung;Park, Eun-Churn;Lee, Sang-Hyun;Chun, Lan;Woo, Sung-Sik;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.4 s.74
    • /
    • pp.419-427
    • /
    • 2006
  • In this paper, an experimental real-time hybrid method, which implements the earthquake response control of a building structure with a TLD(Tuned Liquid Damper) by using only a TLD as an experimental part, is proposed and is experimentally verified through a shaking table test. In the proposed methodology, the whole building structure with a TLD is divided into the upper TLD and the lower structural parts as experimental and numerical substructures, respectively. The control force acting between their interface is measured with a shear-type load-cell which is mounted on the shaking table. The shaking table vibrates the upper experimental TLD with the response calculated from the numerical substructure, which is subjected to the excitations of the measured interface control force at its top story and an earthquake input at its base. The experimental results show that the conventional method, in which both a TLD and a building structure model are physically manufactured and are tested, can be replaced by the proposed methodology with a simple experimental installation and a good accuracy for evaluating the control performance of a TLD.

Simplified Analysis Formula for the Interaction of the Launching Nose and the Superstructure of ILM Bridge (압출추진코와 ILM 교량 상부구조 상호작용 해석식의 단순화)

  • Lee, Hwan-Woo;Jang, Jae-Youp
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.3
    • /
    • pp.245-258
    • /
    • 2012
  • ILM(incremental launching method) is a way of construction, installing a girder producing spot behind the abutment, making the bridge girder infilled with concrete continuously and launching with using by jack. The superstructure of the bridge constructed by this method is temporarily located on the center of the span and the supporting points under construction. Therefore, the sections are structurally undergone maximum positive moment, maximum negative moment, and maximum shear force arising from self weight. On the other hand, launching nose is attached to the front of the girder to decrease the cantilever effect. The magnitude of this temporary stress creating on the upper section is dependent upon the launching nose's characteristics. This study has proposed an analysis formula simplified on the assumption that the launching nose section is a quasi-equivalent section(rigid; equivalent section, weight; tapered section) in order to ensure the accuracy of the analysis formula and improve its usage with reference to the interaction between the launching nose and the upper section; and a prismatic analysis formula modified by displacing a diaphragm's weight by a concentrated load in order to improve the accuracy of the existing analysis formula that assumes the launching nose section as the equivalent section. To judge the accuracy and usage of two analysis formulas proposed, we have compared and analyzed computational structural analysis programs and existing analysis formulas based on actual ILM bridge data. As a result, all of two reveal the superior accuracy and also their usage has been improved by the simplification of analysis formulas.

Experimental Curvature Analysis of Reinforced Concrete Piers with Lap-Spliced Longitudinal Steels subjected to Seismic Loading (지진하중을 받는 주철근 겹침이음된 철근콘크리트 교각의 곡률분석)

  • Chung, Young-Soo;Park, Chang-Kyu;Song, Hee-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.1 s.47
    • /
    • pp.41-49
    • /
    • 2006
  • Through the 1982 Urahawa-ohi and the 1995 Kobe earthquakes, a number of bridge columns were observed to develop a flexural-shear failure due to the bond slip as a consequence of premature termination of the column longitudinal reinforcement. Because the seismic behavior of RC bridge piers is largely dependent on the performance of the plastic hinge legion of RC bridge piers, it is desirable that the seismic capacity of RC bridge pier is to evaluate as a curvature ductility. The provision for the lap splice of longitudinal steel was not specified in KHBDS(Korea Highway Bridge Design Specification) before the implementation of 1992 seismic design code, but the lap splice of not more than 50%, longitudinal reinforcement was newly allowed in the 2005 version of the KHBDS. The objective of this research is to investigate the distribution and ductility of the curvature of RC bridge column with the lap splice of longitudinal reinforcement in the plastic hinge legion. Six (6) specimens were made in 600 mm diameter with an aspect ratio of 2.5 or 3.5. These piers were cyclically subjected to the quasi-static loads with the uniform axial load of $P=0.1f_{ck}A_g$. According to the slip failure of longitudinal steels of the lap spliced specimen by cyclic loads, the curvatures of the lower and upper parts of the lap spliced region were bigger and smaller than the corresponding paris of the specimen without a lap splice, respectively. Therefore, the damage of the lap spliced test column was concentrated almost on the lower part of the lap spliced region, that appeared io be failed in flexure.

Load Fidelity Improvement of Piecewise Integrated Composite Beam by Construction Training Data of k-NN Classification Model (k-NN 분류 모델의 학습 데이터 구성에 따른 PIC 보의 하중 충실도 향상에 관한 연구)

  • Ham, Seok Woo;Cheon, Seong S.
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.108-114
    • /
    • 2020
  • Piecewise Integrated Composite (PIC) beam is composed of different stacking against loading type depending upon location. The aim of current study is to assign robust stacking sequences against external loading to every corresponding part of the PIC beam based on the value of stress triaxiality at generated reference points using the k-NN (k-Nearest Neighbor) classification, which is one of representative machine learning techniques, in order to excellent superior bending characteristics. The stress triaxiality at reference points is obtained by three-point bending analysis of the Al beam with training data categorizing the type of external loading, i.e., tension, compression or shear. Loading types of each plane of the beam were classified by independent plane scheme as well as total beam scheme. Also, loading fidelities were calibrated for each case with the variation of hyper-parameters. Most effective stacking sequences were mapped into the PIC beam based on the k-NN classification model with the highest loading fidelity. FE analysis result shows the PIC beam has superior external loading resistance and energy absorption compared to conventional beam.

Nonlinear Lateral Behavior and Cross-Sectional Stress Distribution of Concrete Rocking Columns (콘크리트 회전형 기둥의 비선형 횡방향 거동 및 단면응력 분포 분석)

  • Roh, Hwa-Sung;Hwang, Woong-Ik;Lee, Hu-Seok;Lee, Jong-Seh
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.285-292
    • /
    • 2012
  • Fixed connection is generally used for beam and column connections of concrete structures, but significant damages at the connection due to severe earthquakes have been reported. In order to reduce damages of the connection and improve seismic performance of the connection, several innovative connections have been suggested. One newly proposed connection type allows a rotation of the connection for applications in rotating or rocking beams, columns, and shear walls. Such structural elements would provide a nonlinear lateral force-displacement response since their contact depth developed during rotation is gradually reduced and the stress across the sections of the elements is non-linearly distributed around a contact area, which is called an elastic hinge region in the present study. The purpose of the present study is to define the elastic hinge region or length for the rocking columns, through investigating the cross-sectional stress distribution during their lateral behavior. Performing a finite element analysis (FEA), several parameters are considered including axial load levels (5% and 10% of nominal strength), different boundary conditions (confined-ends and cantilever types), and slenderness ratios (length/depth = 5, 7, 10). The FEA results showed that the elastic hinge length does not directly depend on the parameters considered, but it is governed by a contact depth only. The elastic hinge length started to develop after an opening state and increased non-linearly until a rocking point(pre-rocking). However, the length did not increase any more after the rocking point (post-rocking) and remained as a constant value. Half space model predicting the elastic hinge length is adapted and the results are compared with the numerical results.

Optimum Reinforcement Conditions of Large Diameter Reinforcement for Steep Slope of Conventional Railway Embankment under Train Loading (기존선 성토사면 급구배화를 위한 열차 하중 하 대구경 봉상보강재의 최적 보강조건)

  • Kwak, Chang-Won;Kim, Dae-Sang
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.11
    • /
    • pp.43-50
    • /
    • 2016
  • A reinforcement is required to ensure the structural safety in case of railway embankment excavation under railway load. A large diameter soil nailing with concrete wall is applied as the reinforcement method instead of the conventional soil nailing system. In this study, a series of 3 dimensional numerical analyses are performed to investigate the optimum reinforcement considering 15 different conditions based on the length, lateral spacing, diameter, and inclination of the reinforcement. The interface between soil nail and perimetric grout is considered by means of cohesion, stiffness and perimeter of the grout. 0.3 m of reinforcement diameter is assessed as the most appropriate based on the economical viewpoint though ground displacement decreases with the increase of diameter, however the difference of displacement is negligible between 0.4 m and 0.3 m of diameter. Surface settlement, lateral displacement of wall, and stress of reinforcement are calculated and economic viewpoint to reinforce embankment considered. Consequently, the optimum reinforcement conditions considering those factors are evaluated as 3 m in length, 0.3 m in diameter, 1.5 m in lateral spacing, and 10 degree of inclination angle in the case of 3 m of excavation depth. Additionally, inclined potential failure surface occurs with approximately 60 degrees from the end of nails and the surface settlement and wall lateral displacement are restrained successfully by the large diameter soil nailing, based on the result of shear strain rate.

Continuity for Double Tee Slabs (더블티 슬래브의 연속화)

  • 유승룡
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.99-106
    • /
    • 2001
  • The main objective of this study is to develop a continuity of double tee slab with two modified dap-ends to solve the problems of excessive moment, slab depth, deflection, and joint cracking in the original simply supported double tee slab systems. The modified joint is produced in a combination with two slabs with modified dap and one rectangular beam. The modified joint can be justified as following different merits. The span capacity for a design load is increased, while the deflection of the slab is decreased due to the decrease of positive moment at the center span of the slab. The joint cracking between slab and beam, which occur frequently in the original slab systems of double tee will be reduced. No more additional form work is needed to cast topping concrete for continuity. Three point loading tests are performed on the specimens with a variable of an amount of main longitudinal reinforcement to evaluate flexural and shear behavior. Following conclusions are obtained from the experimental investigation. The continuity of double tee slab effectively is provided by placing longitudinal steel reinforcement in the topping concrete over the connection, and generally leads to an increase in span capacity of double tee slabs with reduced deflection. It is more effective to control the initial cracking at the connection than that of some simply supported double tee slab systems.

Development and Field Application of Apparatus for Determination of Limit State Design Strength Characteristics in Weathered Ground (한계상태설계법 지반정수 산정을 위한 풍화대 강도특성 측정장치의 개발 및 현장적용에 관한 연구)

  • Kim, Ki Seog;Kim, Jong Hoon;Choi, Sung-oong
    • Tunnel and Underground Space
    • /
    • v.30 no.2
    • /
    • pp.164-179
    • /
    • 2020
  • Applying the limit state design method to geotechnical structures, accuracy and reliability of its design are mainly affected by parameters for geotechnical site characteristics, such as unit weight, Poisson's ratio, deformation modulus, cohesion and frictional angle. When the structures are located in weathered ground, especially, cohesion and frictional angle of ground are closely related with decision of parameters for structures' load and ground's resistance. Therefore, the accurate determination of these parameters, which are commonly obtained from field measurement, such as borehole shear test, are essential for optimum design of geotechnical structures. The 38 case studies, in this study, have been analyzed for understanding the importance of these parameters in designing the ground structures. From these results, importance of field measurement was also ascertained. With these evaluations, an apparatus for determining the strength characteristics, which are fundamental in limit state design (LSD) method, have been newly developed. This apparatus has an improved function as following the ASTM suggestion. Through the field application of this apparatus, the strong point of minimizing the possibility of error occurrence during the measurement has been verified and authors summarized that the essential parameters for LSD can be qualitatively obtained by this apparatus for determination of strength characteristics of weathered ground.

Polygonal Grain-Based Distinct Element Modelling of Mechanical Characteristics and Transverse Isotropy of Rock (다각형 입자 기반 개별요소모델을 통한 암석의 역학적 특성과 횡등방성 모사)

  • Park, Jung-Wook;Park, Chan;Ryu, Dongwoo;Choi, Byung-Hee;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.26 no.3
    • /
    • pp.235-252
    • /
    • 2016
  • This study presents a methodology to reproduce the mechanical behavior of isotropic or transversely isotropic rock using the polygonal grain-based distinct element model. A numerical technique to monitor the evolution of micro-cracks during the simulation was developed in the present study, which enabled us to examine the contribution of tensile cracking and shear cracking to the progressive process of the failure. The numerical results demonstrated good agreement with general observations from rock specimens in terms of the behavior and the evolution of micro-cracks, suggesting the capability of the model to represent the mechanical behavior of rock. We also carried out a parametric study as a fundamental work to examine the relationships between the microscopic properties of the constituents and the macroscopic behavior of the model. Depending on the micro-properties, the model exhibited a variety of responses to the external load in terms of the strength and deformation characteristics. In addition, a numerical technique to reproduce the transversely isotropic rock was suggested and applied to Asan gneiss from Korea. The behavior of the numerical model was in good agreement with the results obtained in the laboratory-scale experiments of the rock.