• 제목/요약/키워드: Shear load

검색결과 2,638건 처리시간 0.028초

Push-out test on the one end welded corrugated-strip connectors in steel-concrete-steel sandwich structure

  • Yousefi, Mehdi;Ghalehnovi, Mansour
    • Steel and Composite Structures
    • /
    • 제24권1호
    • /
    • pp.23-35
    • /
    • 2017
  • Current form of Corrugated-strip connectors are not popular due to the fact that the two ends of this form need to be welded to steel face plates. To overcome this difficulty, a new system is proposed in this work. In this system, bi-directional corrugated-strip connectors are used in pairs, and only one of their ends is welded to the steel face plates on each side. The other end is embedded in the concrete core. To assemble the system, common welding devices are required, and welding process can be performed in the construction sites. By performing the Push-out test under static loading, the authors experimentally assess the effects of geometric parameters on ductility, failure modes and the ultimate shear strength of the aforesaid connectors. For this purpose, sixteen experimental samples are prepared and investigated. For fifteen of these samples, one end of the shear connectors is welded to steel face plates, and the other end is embedded in the concrete. Another experimental sample is prepared in which both ends are welded to the steel face plates. According to the achieved results, several relations are proposed for predicting the ultimate shear strength and load vs. interlayer slip (load-slip) behavior of corrugated-strip connectors. Moreover, these formulas are compared with those of the well-known codes and standards. Accordingly, it is concluded that the authors' relations are more reliable.

온태리오형 교량상판의 거동에 관한 연구 (사교의 경우) (Behavlor of Ontarlo-Type Skew Bridge Decks)

  • 김긍환
    • 콘크리트학회지
    • /
    • 제2권1호
    • /
    • pp.101-108
    • /
    • 1990
  • 사교의 경우에 있어서 온태리오형 상판의 거동에 대하여 실험 및 해석적으로 연구하였다. 텍사스주에서 수정 제안된 온태리오형 상판의 상세에 따라 실물크기 모형을 제작하여 상판의 양단부와 중앙에서 상판이 파괴될 때까지 수행하였다. 실험모형은 현행 AASHO 설계하중에서 뿐만 아니라 설계하중의 3배에 달하는 초과하중에서도 만족스러운 거동을 하였다. 상판의 양단부는 전단, 중앙부는 펀칭전단에 의하여 파괴되었으며 실제파괴강도는 아치현상을 고려하여 계산한 휨파괴강도보다 휠씬 작았다. 실험결과를 예측하고 다른 경우에 대해서도 사용할 수 있도록 해석모델을 구축하였으며 실험결과와 매우 근사한 해석결과를 얻었다.

Bond-slip constitutive model of concrete to cement-asphalt mortar interface for slab track structure

  • Su, Miao;Dai, Gonglian;Peng, Hui
    • Structural Engineering and Mechanics
    • /
    • 제74권5호
    • /
    • pp.589-600
    • /
    • 2020
  • The bonding interface of the concrete slab track and cement-asphalt mortar layer plays an important role in transferring load and restraining the track slab's deformation for slab track structures without concrete bollards in high-speed railway. However, the interfacial bond-slip behavior is seldom considered in the structural analysis; no credible constitutive model has been presented until now. Elaborating the field tests of concrete to cement-asphalt mortar interface subjected to longitudinal and transverse shear loads, this paper revealed its bond capacity and failure characteristics. Interfacial fractures all happen on the contact surface of the concrete track slab and mortar-layer in the experiments. Aiming at this failure mechanism, an interfacial mechanical model that employed the bilinear local bond-slip law was established. Then, the interfacial shear stresses of different loading stages and the load-displacement response were derived. By ensuring that the theoretical load-displacement curve is consistent with the experiment result, an interfacial bond-slip constitutive model including its the corresponding parameters was proposed in this paper. Additionally, a finite element model was used to validate this constitutive model further. The constitutive model presented in this paper can be used to describe the real interfacial bonding effect of slab track structures with similar materials under shear loads.

Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads

  • Hamed, Mostafa A.;Mohamed, Salwa A;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • 제34권1호
    • /
    • pp.75-89
    • /
    • 2020
  • The current paper illustrates the effect of in-plane varying compressive force on critical buckling loads and buckling modes of sandwich composite laminated beam rested on elastic foundation. To generalize a proposed model, unified higher order shear deformation beam theories are exploited through analysis; those satisfy the parabolic variation of shear across the thickness. Therefore, there is no need for shear correction factor. Winkler and Pasternak elastic foundations are presented to consider the effect of any elastic medium surrounding beam structure. The Hamilton's principle is proposed to derive the equilibrium equations of unified sandwich composite laminated beams. Differential quadrature numerical method (DQNM) is used to discretize the differential equilibrium equations in spatial direction. After that, eigenvalue problem is solved to obtain the buckling loads and associated mode shapes. The proposed model is validated with previous published works and good matching is observed. The numerical results are carried out to show effects of axial load functions, lamination thicknesses, orthotropy and elastic foundation constants on the buckling loads and mode shapes of sandwich composite beam. This model is important in designing of aircrafts and ships when non-uniform compressive load and shear loading is dominated.

Analysis of colliding index on impact behavior of RC columns under repeated impact loading

  • Tantrapongsaton, Warakorn;Hansapinyo, Chayanon;Wongmatar, Piyapong;Limkatanyu, Suchart;Zhang, Hexin;Charatpangoon, Bhuddarak
    • Computers and Concrete
    • /
    • 제30권1호
    • /
    • pp.19-32
    • /
    • 2022
  • This paper presents an investigation into the failure of RC columns under impact loadings. A numerical simulation of 19 identical RC columns subjected to single and repeated impact loadings was performed. A free-falling hammer was dropped at midspan with the same total kinetic energy input but varying mass and momentum. The specimens under the repeated impact test were struck two times at the same location. The colliding index, defined as the impact energy-momentum ratio, was proposed to explain the different impact responses under equal-energy impacts. The increase of colliding index from low to high indicates the transition of the impact response from static to dynamic and failure mode from flexure to shear. This phenomenon was more evident when the column had a greater axial load and was impacted with a high colliding index. The existence of the axial load had an inhibitory effect on the crack development and increased the shear resistance. The second impact changes the failure mode from flexural to brittle shear as found in the specimen with 20% axial load subjected to high a colliding index. Moreover, a deflection prediction equation based on the impact energy and force was limited to the low colliding index impact.

A study on the seismic behavior of Reinforced Concrete (RC) wall piers strengthened with CFRP sheets: A pushover analysis approach

  • Fatemeh Zahiri;Ali Kheyroddin;Majid Gholhaki
    • Structural Engineering and Mechanics
    • /
    • 제88권5호
    • /
    • pp.419-437
    • /
    • 2023
  • The use of reinforced concrete (RC) shear walls (SW) as an efficient lateral load-carrying system has gained recent attention. However, creating openings in RC shear walls is unavoidable due to architectural requirements. This reduces the walls' strength and stiffness, resulting in the development of wall piers. In this study, the cyclic behavior of RC shear walls with openings, reinforced with carbon fiber reinforced polymer (CFRP) sheets in various patterns, was numerically investigated. Finite element analysis (FEA) using ABAQUS software was employed. Additionally, the retrofitting of sub-standard buildings (5, 10, and 15-story structures) designed based on the old and new versions of the Iranian Code of Practice for Seismic-Resistant Structures was evaluated. Nonlinear static analyses, specifically pushover analyses, were conducted on the structures. The best pattern of CFRP wrapping was determined and utilized for retrofitting the sub-standard structures. Various structural parameters, such as load-carrying capacity, ductility, stress contours, and tension damage contours, were compared to assess the efficiency of the retrofit solution. The results indicated that the load-carrying capacity of the sub-standard structures was lower than that of standard ones by 57%, 69%, and 67% for 5, 10, and 15-story buildings, respectively. However, the retrofit solution utilizing CFRP showed promising results, enhancing the capacity by 10-25%. The retrofitted structures demonstrated increased yield strength, ultimate strength, and ductility through CFRP wrapping and effectively prevented wall slipping.

콘크리트 블록 접촉면의 전단특성 (Shear Behavior Characteristics of Interface between Two Concrete-blocks)

  • 이승현;김병일
    • 한국지반공학회논문집
    • /
    • 제24권6호
    • /
    • pp.69-75
    • /
    • 2008
  • 분리형부재 보강토 옹벽(SRW)을 구성하는 생태축조블록 접촉면에 대한 전단시험을 수행하였다. 전단이 발생하는 두 개의 블록 사이의 접촉면조건은 두 블록을 직접 접촉시키는 경우와 블록 사이에 고무패드를 설치한 경우 그리고 블록 사이에 고무패드와 전단키를 설치한 각각 3가지 접촉면 조건을 고려하였다. 전단시험에 따르면 두개의 블록을 직접 접촉시킨 경우 전단하중-전단변위 관계가 탄성-완전소성형태와 유사하였으며 블록 사이의 접촉면에 고무패드를 설치한 경우 전단하중-전단변위 관계는 연성거동을 보였다. 블록과 블록을 직접 접촉시킨 경우와 블록과 블록 사이의 접촉면에 고무패드를 설치한 경우 그리고 블록과 블록 접촉면 사이에 고무패드와 전단키를 설치한 경우에 대한 최소 전단저항력과 겉보기 마찰각은 각각 1.7kN/m, $27.6^{\circ}$와 4.2kN/m, $26.2^{\circ}$ 그리고 20.9kN/m, $26.0^{\circ}$이었다.

강합성 거더용 철근콘크리트 전단연결체의 전단강도 평가 (Estimation of Shear Strength of RC Shear Connection for the Steel-Concrete Composite Girder)

  • 신현섭;유영준;정연주;엄인수
    • 대한토목학회논문집
    • /
    • 제30권3A호
    • /
    • pp.229-239
    • /
    • 2010
  • 최근 건설재료의 효율적 활용과 단면구조의 최적화로써 기존 강합성 거더의 구조성능과 시공성을 향상시키고자 새로운 형상의 강합성 거더 및 거더와 바닥판의 전단합성을 위한 RC 전단연결체가 고안된 바 있다. 본 연구에서는 RC 전단연결체의 구조거동 및 전단강도를 평가하였다. 이를 위해 전단철근비를 변수로 하여 Push-out 실험을 실시하였고, 다양한 설계변수에 대한 유한요소해석을 수행하여 그 결과를 분석하였다. 실험 및 유한요소해석 결과에 의하면 RC 전단연결체의 전단강도를 기존 규준식으로 산정할 경우 매우 안전측으로 평가된다. 본 연구에서는 RC 전단연결체의 전단강도를 적절히 산정하기 위해 회귀분석적 방법으로 전단강도 평가식을 제안하였다.

Effect of the height of SCSW on the optimal position of the stiffening beam considering axial force effect

  • Azar, B. Farahmand;Hadidi, A.;Khosravi, H.
    • Structural Engineering and Mechanics
    • /
    • 제41권2호
    • /
    • pp.299-312
    • /
    • 2012
  • Stiffened coupled shear walls (SCSW) are under axial load resulting from their weight and this axial load affects the behavior of walls because of their excessive height. In this paper, based on the continuum approach, the optimal position of the stiffening beam on the stiffened coupled shear walls is investigated considering the effect of uniformly distributed axial loads. Moreover, the effect of the height of stiffened coupled shear walls on the optimal position of the stiffening beam has been studied with and without considering the axial force effect. A computer program has been developed in MATLAB and numerical examples have been solved to demonstrate the reliability of this method. The effects of the various flexural rigidities of the stiffening beam on the internal forces and the lateral deflection of the structure considering axial force effect have also been investigated.

탄소섬유쉬트로 전단보강한 RC 기둥의 이력성능평가에 관한 실험적 연구 (An Experimental Study on the Hysteretic Capacity Evaluation of the Shear-Strengthened RC Column with Carbon Fiber Sheet)

  • 이현호;구은숙
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.750-755
    • /
    • 1999
  • When the RC frame structures subjected to the seismic load, brittle shear failure of vertical members induces brittle collapse of whole structures. Failure mechanism like this is not desirable. So shear strengthening method to avoid this failure mechanism is needed. Recently, strengthening method using continuous fiber sheet is studied and used widely which have high elastic and high strength characteristics. In this study, RC columns which is strengthened by carbon fiber sheet in the form of tape or whole sheet were tested under the cyclic load. The parameter of this test is the amount of strengthening. As the amount of strengthening increase, strength, ductility and energy capacity increase. The failure mode of test results are shear and bond-split failure.

  • PDF