• Title/Summary/Keyword: Shear failure of web

Search Result 111, Processing Time 0.021 seconds

Shear resistance of corrugated web steel beams with circular web openings: Test and machine learning-based prediction

  • Yan-Wen Li;Guo-Qiang Li;Lei Xiao;Michael C.H. Yam;Jing-Zhou Zhang
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.103-117
    • /
    • 2023
  • This paper presents an investigation on the shear resistance of corrugated web steel beams (CWBs) with a circular web opening. A total of five specimens with different diameters of web openings were designed and tested with vertical load applied on the top flange at mid-span. The ultimate strengths, failure modes, and load versus middle displacement curves were obtained from the tests. Following the tests, numerical models of the CWBs were developed and validated against the test results. The influence of the web plate thickness, steel grade, opening diameter, and location on the shear strength of the CWBs was extensively investigated. An XGBoost machine learning model for shear resistance prediction was trained based on 256 CWB samples. The XGBoost model with optimal hyperparameters showed excellent accuracy and exceeded the accuracy of the available design equations. The effects of geometric parameters and material properties on the shear resistance were evaluated using the SHAP method.

Prediction of ultimate shear strength and failure modes of R/C ledge beams using machine learning framework

  • Ahmed M. Yousef;Karim Abd El-Hady;Mohamed E. El-Madawy
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.4
    • /
    • pp.337-357
    • /
    • 2022
  • The objective of this study is to present a data-driven machine learning (ML) framework for predicting ultimate shear strength and failure modes of reinforced concrete ledge beams. Experimental tests were collected on these beams with different loading, geometric and material properties. The database was analyzed using different ML algorithms including decision trees, discriminant analysis, support vector machine, logistic regression, nearest neighbors, naïve bayes, ensemble and artificial neural networks to identify the governing and critical parameters of reinforced concrete ledge beams. The results showed that ML framework can effectively identify the failure mode of these beams either web shear failure, flexural failure or ledge failure. ML framework can also derive equations for predicting the ultimate shear strength for each failure mode. A comparison of the ultimate shear strength of ledge failure was conducted between the experimental results and the results from the proposed equations and the design equations used by international codes. These comparisons indicated that the proposed ML equations predict the ultimate shear strength of reinforced concrete ledge beams better than the design equations of AASHTO LRFD-2020 or PCI-2020.

Experimental and analytical study on the shear strength of corrugated web steel beams

  • Barakat, Samer;Leblouba, Moussa
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.251-266
    • /
    • 2018
  • Compared to conventional flat web I-beams, the prediction of shear buckling stress of corrugated web steel beams (CWSBs) is not straightforward. But the CWSBs combined advantages of lightweight large spans with low-depth high load-bearing capacities justify dealing with such difficulties. This work investigates experimentally and analytically the shear strength of trapezoidal CWSBs. A set of large scale CWSBs are manufactured and tested to failure in shear. The results are compared with widely accepted CWSBs shear strength prediction models. Confirmed by the experimental results, the linear buckling analyses of trapezoidal corrugated webs demonstrated that the local shear buckling occurs only in the flat plane folds of the web, while the global shear buckling occurs over multiple folds of the web. New analytical prediction model accounting for the interaction between the local and global shear buckling of CWSBs is proposed. Experimental results from the current work and previous studies are compared with the proposed analytical prediction model. The predictions of the proposed model are significantly better than all other studied models. In light of the dispersion of test data, accuracy, consistency, and economical aspects of the prediction models, the authors recommend their proposed model for the design of CWSBs over the rest of the models.

The Internet-based Composite Repair (인터넷 기반 복합재 보수)

  • 추원식;안성훈
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.139-142
    • /
    • 2003
  • As composite materials are gaining wide acceptance in aircraft structure, repair of damaged composite is becoming an important issue. The issues in composite repair include high cost, material interchangeability, water ingression, and structural integrity. To address these problems, researchers have studied on the composite repair in various aspects. In this paper, an Internet-based advisory service (called Repair Advisory Service, RAS) for composite repair is proposed to increase efficiency for repair process. In the RAS system the web browser is used as its user interface, which provides easy access to the service. The RAS server provides web-based tools for failure prediction, Structural Repair Manual (SRM), automated prepreg cutting process, material properties, inventory and knowledge base. The computer codes implemented for repair design estimate the tensile failure and shear failure of repaired structures. The prediction of failure is based on the maximum strain criterion for tensile failure while elastic-perfect plastic shear failure model is applied for interfacial failure. The OEM's SRM is provided in the PDF format for viewing and searching by web browsers instead of looking up paper version SRM. The knowledge base in this site offers a room to share and distribute ideas, memos, publications, or suggestions from the repair engineers. The fabrication tool of RAS reads repair geometry from engineers then generates a CNC toolpath to cut prepreg patches. The RAS service is open to public and available at http://nano.gsnu.ac.kr/. Broad feedback from field technicians and engineers is welcome to improve the usefulness of RAS.

  • PDF

Design of composite plate girders under shear loading

  • Shanmugam, N.E.;Baskar, K.
    • Steel and Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.1-14
    • /
    • 2006
  • Experiments have been carried out on six composite and two plain steel plate girders under shear loading to understand the elastic and inelastic behaviour of such girders. The failure mechanism assumed and used to develop design equations is normally based on the failure patterns observed in the experiments. Therefore, different types of cracks and failure patterns observed in the experiments are reviewed briefly first. Based on the observed failure patterns, a design method to predict the ultimate shear capacity of composite plate girders is proposed in this paper. The values of ultimate shear capacity obtained using the proposed design method are compared with the corresponding experimental values and it is found that the proposed method is able to predict the shear capacity accurately.

Fracture Analysis of Flexural-Shear Failure in RC Beams (철근콘크리트보의 휨-전단균열에 대한 파괴역학적 해석)

  • Lim, Cheol-Won;Kim, Dae-Joong;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.418-423
    • /
    • 1998
  • This paper is intended to investigate the behavior of flexural-shear cracking in reinforced concrete beams without web reinforcement with FEM incorporated into a linear elastic fracture mechanics approach(LEFM). Each crack was propagated progressively by a finite length, then the quantitative reponses were examined. The results show that the horizontal crack was initiated by the bond-jnduced shear stress due to horizontal shearing action of the T-C force couple after the formation of the critical flexural crack. Also, the horizontal crack is considered to be a major factor of shear failure in slender reinforced concrete beams without web reinforcement.

  • PDF

Flexural and shear behavior of bolt-connected U-shaped steel beams filled with concrete

  • Chul-Goo Kim;Sang-Hyun Lee
    • Steel and Composite Structures
    • /
    • v.53 no.1
    • /
    • pp.61-75
    • /
    • 2024
  • Thin-walled concrete-filled U-shaped steel beams have been recently used in building structures for shortening the construction period and cost efficiency of structural members. In this study, the flexural and shear behavior of newly developed bolt-connected U-shaped steel beams filled with concrete was experimentally evaluated considering load conditions for positive and negative moments, and types of U-shaped steel sections. Because the cross sections are not symmetrical about a horizontal axis, compressive buckling of bottom plates was observed along with web shear buckling under negative moment loading, while the slab concrete under compression was crushed under a positive moment loading. Despite such different shear failure modes depending on load conditions, the shear strength of the composite beams can be conservatively predicted using AISC 360-16 and Eurocode 4. Although the shear contribution of filled concrete is neglected according to the current design codes, the shear capacity of the steel web considering the shear buckling coefficient corresponding to the web width-to-thickness ratio reasonably predicts the test results. In addition, for deep composite beams, the longitudinal lips of a U-shaped steel section anchored into filled concrete can improve the interfacial bond between steel and concrete, thereby enhancing the shear contribution of the steel web.

Evaluation of Deformation Capacity of Slender Reinforced Concrete Walls with Thin Web (얇은 두께의 웨브를 갖는 세장한 벽체의 변형능력 평가)

  • Eom, Tae-Sung;Park, Hong-Gun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.185-186
    • /
    • 2009
  • In the present study, the deformation capacity of slender shear walls with thin web was studied. As reported by other researchers, web-crushing and rebar-fracture, developing by inelastic deformation after flexural yielding, were considered as the governing failure modes of walls. To address the effect of the longitudinal elongation on web-crushing and rebar-fracture, the longitudinal elongation was predicted by using truss model analysis. The failure criteria by web-crushing and rebar-fracture were defined as a function of the longitudinal elongation. The proposed method was applied to 17 shear wall specimens with boundary columns, and the prediction results were compared with the test results. The results showed that proposed method predicted the maximum deformations and failure modes of the wall specimens with reasonable precision.

  • PDF

Seismic behavior of reinforced concrete column-steel beam joints with and without reinforced concrete slab

  • Tong Li;Jinjie Men;Huan Li;Liquan Xiong
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.417-430
    • /
    • 2023
  • As the key part in the reinforced concrete column-steel beam (RCS) frame, the beam-column joints are usually subjected the axial force, shear force and bending moment under seismic actions. With the aim to study the seismic behavior of RCS joints with and without RC slab, the quasi-static cyclic tests results, including hysteretic curves, slab crack development, failure mode, strain distributions, etc. were discussed in detail. It is shown that the composite action between steel beam and RC slab can significantly enhance the initial stiffness and loading capacity, but lead to a changing of the failure mode from beam flexural failure to the joint shear failure. Based on the analysis of shear failure mechanism, the calculation formula accounting for the influence of RC slab was proposed to estimate shear strength of RCS joint. In addition, the finite element model (FEM) was developed by ABAQUS and a series of parametric analysis model with RC slab was conducted to investigate the influence of the face plates thickness, slab reinforcement diameter, beam web strength and inner concrete strength on the shear strength of joints. Finally, the proposed formula in this paper is verified by the experiment and FEM parametric analysis results.

Analysis of Structural Performance of Wood Composite I and Box Beam on Cross Section Component (II) - Calculation and Analysis of Ultimate Loads - (단면구성요소(斷面構成要素)에 관(關)한 목질복합(木質複合) I 및 Box형(形) 보의 구조적(構造的) 성능(性能) 분석(分析) (II) - 최대하중(最大荷重)의 계산(計算) 및 해석(解析) -)

  • Oh, Sei-Chang;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.62-71
    • /
    • 1991
  • An evaluation of bending test of composite I and Box beams for determining the ultimate strength limit design criteria was presented. Maxium loads of composite I beams were found in beams composed of thicker upper flanges and/or vertical LVL flanges. These loads of plywood web beams were greater than those of PB web beams. Maximum loads of unsymmetrical box beams were less than those of symmetrical box beams. Thus, it took on different phase in box type beams. Ultimate loads of composite beams were greater than those of solid. The failure of composite beams were abrupt and failure mode was classified into following categories; Edgewise shear failure in web, delamination in flange-web joint, tension failure and tearing in LVL flanges, and web delamination. These failures of composite beams were appeared at the mixed mode. The influence factor affecting the performance of tested composite beams was shear strength of PB-web composite beams and compressive strength in plywood-web composite beams. It was also assumed that the influence factors on structural performance on composite beams were flange quality, web material and geometry of cross section. As one of the design methods resisting to compressive stress that was required in the case of small span to depth ratio and deep beams. composite I-beams composed of thicker upper flanges comparing to lower flanges were very effective in structural performance.

  • PDF