• 제목/요약/키워드: Shear capacity

검색결과 1,928건 처리시간 0.026초

An Experimental Study on the Shear behavior of High Strength light-aggregate Reinforced Concrete Beam (고강도 경량 콘크리트 보의 전단거동에 관한 실험적 연구)

  • 박완신;진인철;윤현도;정수영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.385-388
    • /
    • 1999
  • This study is to investigate experimentally the shear capacity of high-strength reinforced concrete beams subjected to monotonic loading. Nine reinforced concrete beams using high strength concrete $(f'c=380kg/\textrm{cm}^2)$ are tested to determine their diagonal cracking and ultimate shear capacity. The main variables are shear span-depth ratio a/d=1.5, 2.5, 3.5, and shear reinforcement ratio. All specimens are 170mm wide and have a total depth of 300mm. The test results indicate that ACI 318-95(b) Code for shear capacity gave closest agrement with the exsprimental results. The beams with a shear spear-depth ratio 1.5 and 2.5. ACI 318-95 Code underestimates shear strength carried by vertical shear reinforcements.

Experimental Verification of Resistance-Demand Approach for Shear of HSC Beams

  • El-Sayed, Ahmed K.;Shuraim, Ahmed B.
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권4호
    • /
    • pp.513-525
    • /
    • 2016
  • The resistance-demand approach has emerged as an effective approach for determining the shear capacity of reinforced concrete beams. This approach is based on the fact that both the shear resistance and shear demand are correlated with flexural tensile strain from compatibility and equilibrium requirements. The basic shear strength, under a given loading is determined from the intersection of the demand and resistance curves. This paper verifies the applicability of resistance-demand procedure for predicting the shear capacity of high strength concrete beams without web reinforcement. A total of 18 beams were constructed and tested in four-point bending up to failure. The test variables included the longitudinal reinforcement ratio, the shear span to depth ratio, and the beam depth. The shear capacity of the beams was predicted using the proposed procedure and compared with the experimental values. The results of the comparison showed good prediction capability and can be useful to design practice.

The Overall Investigation of Steel Fiber Strengthening Factor in Shear (전단에 대한 강섬유 보강계수의 종합적 고찰)

  • Lee, Hyun-Ho;Kwon, Yeong-Ho;Lee, Hwa-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.251-254
    • /
    • 2005
  • This study will have to define the shear strengthening effects of steel fiber in beam and column levels, as well as to suggest estimation method of maximum shear capacity of structural members. From review of literature surveys and perform structural member test results, following conclusion can be made; In beam level, steel fiber strengthening factor is suggested from the tensile splitting test results and beam test results. After suggesting shear capacity of beam without stirrups and beam with stirrups by proposed steel fiber strengthening factor, proposed equation is possible to evaluate the shear capacity of beam. In column level, with column test results and proposed steel fiber strengthening factor, shear capacity equation of steel fiber reinforced concrete in column is suggested.

  • PDF

Design Equation for Punching Shear Capacity of SFRC Slabs

  • Higashiyama, Hiroshi;Ota, Akari;Mizukoshi, Mutsumi
    • International Journal of Concrete Structures and Materials
    • /
    • 제5권1호
    • /
    • pp.35-42
    • /
    • 2011
  • In this paper, a design equation for the punching shear capacity of steel fiber reinforced concrete (SFRC) slabs is proposed based on the Japan Society of Civil Engineers (JSCE) standard specifications. Addition of steel fibers into concrete improves mechanical behavior, ductility, and fatigue strength of concrete. Previous studies have demonstrated the effectiveness of fiber reinforcement in improving the shear behavior of reinforced concrete slabs. In this study, twelve SFRC slabs using hooked-ends type steel fibers are tested with varying fiber dosage, slab thickness, steel reinforcement ratio, and compressive strength. Furthermore, test data conducted by earlier researchers are involved to verify the proposed design equation. The proposed design equation addresses the fiber pull-out strength and the critical shear perimeter changed by the fiber factor. Consequently, it is confirmed that the proposed design equation can predict the punching shear capacity of SFRC slabs with an applicable accuracy.

Study of the design and mechanical performance of a GFRP-concrete composite deck

  • Yang, Yong;Xue, Yicong;Yu, Yunlong;Liu, Ruyue;Ke, Shoufeng
    • Steel and Composite Structures
    • /
    • 제24권6호
    • /
    • pp.679-688
    • /
    • 2017
  • A GFRP-concrete composite bridge deck is presented in this paper. This composite deck is composed of concrete and a GFRP plate and is connected by GFRP perfobond (PBL) shear connectors with penetrating GFRP rebar. There are many outstanding advantages in mechanical behavior, corrosion resistance and durability of this composite deck over conventional reinforced concrete decks. To analyze the shear and flexural performance of this GFRP-concrete composite deck, a static loading experiment was carried out on seven specimens. The failure modes, strain development and ultimate bearing capacity were thoroughly examined. Based on elastic theory and strain-based theory, calculation methods for shear and flexural capacity were put forward and revised. The comparison of tested and theoretical capacity results showed that the proposed methods could effectively predict both the flexural and shear capacity of this composite deck. The ACI 440 methods were relatively conservative in predicting flexural capacity and excessively conservative in predicting shear capacity of this composite deck. The analysis of mechanical behavior and the design method can be used for the design of this composite deck and provides a significant foundation for further research.

Flexural behaviour and capacity of composite panels of light gage steel and concrete

  • Shi, L.;Liu, Y.;Dawe, J.L.;Bischoff, P.
    • Steel and Composite Structures
    • /
    • 제9권5호
    • /
    • pp.397-418
    • /
    • 2009
  • Eight panel specimens were tested in one-way bending to study the behaviour and capacity of composite slab joists consisting of cold-formed steel C-sections and concrete. Various shear transfer mechanisms were implemented on the C-section flange embedded in the concrete to provide the longitudinal shear resistance. Results showed that all specimens reached serviceability limit state while in elastic range and failure was ductile. Shear transfer achieved for all specimens ranged from 42 to 99% of a full transfer while specimens employed with shear transfer enhancements showed a greater percentage and therefore a higher strength compared with those relying only on surface bond to resist shear. The implementation of pre-drilled holes on the embedded flange of the steel C-section was shown to be most effective. The correlation study between the push-out and panel specimens indicated that the calculated moment capacity based on shear transfer resistance obtained from push-out tests was, on average, 10% lower than the experimental ultimate capacity of the panel specimen.

Shear Capacity of Reinforced Concrete Beams Using Neural Network

  • Yang, Keun-Hyeok;Ashour, Ashraf F.;Song, Jin-Kyu
    • International Journal of Concrete Structures and Materials
    • /
    • 제1권1호
    • /
    • pp.63-73
    • /
    • 2007
  • Optimum multi-layered feed-forward neural network (NN) models using a resilient back-propagation algorithm and early stopping technique are built to predict the shear capacity of reinforced concrete deep and slender beams. The input layer neurons represent geometrical and material properties of reinforced concrete beams and the output layer produces the beam shear capacity. Training, validation and testing of the developed neural network have been achieved using 50%, 25%, and 25%, respectively, of a comprehensive database compiled from 631 deep and 549 slender beam specimens. The predictions obtained from the developed neural network models are in much better agreement with test results than those determined from shear provisions of different codes, such as KBCS, ACI 318-05, and EC2. The mean and standard deviation of the ratio between predicted using the neural network models and measured shear capacities are 1.02 and 0.18, respectively, for deep beams, and 1.04 and 0.17, respectively, for slender beams. In addition, the influence of different parameters on the shear capacity of reinforced concrete beams predicted by the developed neural network shows consistent agreement with those experimentally observed.

Shear behaviour of RC beams retrofitted using UHPFRC panels epoxied to the sides

  • Al-Osta, Mohammed A.
    • Computers and Concrete
    • /
    • 제24권1호
    • /
    • pp.37-49
    • /
    • 2019
  • In this study, the shear behaviour of reinforced concrete (RC) beams that were retrofitted using precast panels of ultra-high performance fiber reinforced concrete (UHPFRC) is presented. The precast UHPFRC panels were glued to the side surfaces of RC beams using epoxy adhesive in two different configurations: (i) retrofitting two sides, and (ii) retrofitting three sides. Experimental tests on the adhesive bond were conducted to estimate the bond capacity between the UHPFRC and normal concrete. All the specimens were tested in shear under varying levels of shear span-to-depth ratio (a/d=1.0; 1.5). For both types of configuration, the retrofitted specimens exhibited a significant improvement in terms of stiffness, load carrying capacity and failure mode. In addition, the UHPFRC retrofitting panels glued in three-sides shifted the failure from brittle shear to a more ductile flexural failure with enhancing the shear capacity up to 70%. This was more noticeable in beams that were tested with a/d=1.5. An approach for the approximation of the failure capacity of the retrofitted RC beams was evolved using a multi-level regression of the data obtained from the experimental work. The predicted values of strength have been validated by comparing them with the available test data. In addition, a 3-D finite element model (FEM) was developed to estimate the failure load and overall behaviour of the retrofitted beams. The FEM of the retrofitted beams was conducted using the non-linear finite element software ABAQUS.

Seismic tests of RC shear walls confined with high-strength rectangular spiral reinforcement

  • Zhao, Huajing;Li, Qingning;Song, Can;Jiang, Haotian;Zhao, Jun
    • Steel and Composite Structures
    • /
    • 제24권1호
    • /
    • pp.1-13
    • /
    • 2017
  • In order to improve the deformation capacity of the high-strength concrete shear wall, five high-strength concrete shear wall specimens confined with high-strength rectangular spiral reinforcement (HRSR) possessing different parameters, were designed in this paper. One specimen was only adopted high-strength rectangular spiral hoops in embedded columns, the rest of the four specimens were used high-strength rectangular spiral hoops in embedded columns, and high-strength spiral horizontal distribution reinforcement were used in the wall body. Pseudo-static test were carried out on high-strength concrete shear wall specimens confined with HRSR, to study the influence of the factors of longitudinal reinforcement ratio, hoop reinforcement form and the spiral stirrups outer the wall on the failure modes, failure mechanism, ductility, hysteresis characteristics, stiffness degradation and energy dissipation capacity of the shear wall. Results showed that using HRSR as hoops and transverse reinforcements could restrain concrete, slow load carrying capacity degeneration, improve the load carrying capacity and ductility of shear walls; under the vertical force, seismic performance of the RC shear wall with high axial compression ratio can be significantly improved through plastic hinge area or the whole body of the shear wall equipped with outer HRSR.

Influence of ECC ductility on the diagonal tension behavior (shear capacity) of shear-wall panel (ECC (Engineered Cementitious Composite)의 연성이 전단벽의 사인장 거동에 미치는 영향)

  • Ha Gee-Joo;Shin Jong-Hack;Kim Yun Yong;Kim Jeong-Su;Kim Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.321-324
    • /
    • 2005
  • This paper presents a preliminary study on the influence of material ductility on diagonal tension behavior of shear-wall panels. There have been a number of previous studies, which suggest that the use of high ductile material such as ECC (Engineered Cementitious Composite) significantly enhanced shear capacity of structural elements even without shear reinforcements involved. The present study emphasizes increased shear capacity of shear-wall panels by employing a unique strain-hardening ECC reinforced with poly(vinyl alcohol) (PVA) short random fibers. Normal concrete was adopted as the reference material. Experimental investigation was performed to assess the failure mode of shear-wall panels subjected to knife-edge loading. The results from experiments show that ECC panels exhibit a more ductile failure mode and higher shear capacity when compared to ordinary concrete panels. The superior ductility of ECC was clearly reflected by micro-crack development, suppressing the localized drastic fracture typically observed in concrete specimen. This enhanced structural performance indicates that the application of ECC for a in-filled frame panel can be effective in enhancing seismic resistance of an existing frame in service.

  • PDF