• 제목/요약/키워드: Shear Wall

검색결과 1,476건 처리시간 0.028초

복부방향 수평하중을 받는 L형 벽체의 횡보강근 구속에 따른 구조성능 평가 (Evaluation of Structural Capacity of L-shaped Walls with Different Confinement Details Under Web-direction Lateral Force)

  • 조남선;하상수;최창식;오영훈;이리형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.65-70
    • /
    • 2001
  • The compression toe of structural wall is designed to resist the axial compression and shear force caused by wind or earthquake. The performance of shear wall used in tall building is highly influenced by combined shear and axial force. For this reason, it is possible to result in local brittle failure because of concentrated damage in the potential plastic hinge region under severe earthquake. Thus, it is necessary to establish the lateral confinement details at the plastic hinge of shear wall so that shear wall can behave a ductile manner, The objective of this study is to evaluate the seismic performance of L-shaped walls with different confinement details. For this purpose, three wall specimens were tested experimentally and also analyzed using Nonlinear FEM package.

  • PDF

EEG Signal Processing in Japan

  • Utsunomiya, Toshio
    • 대한의용생체공학회:의공학회지
    • /
    • 제6권2호
    • /
    • pp.9-12
    • /
    • 1985
  • The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses.

  • PDF

슈퍼요소를 이용한 개구부를 가진 전단벽의 해석 (Analysis of Shear Wall with Openings Using Super Element)

  • 이동근;김현수;남궁계홍
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.343-350
    • /
    • 2001
  • The box system, composed only of reinforced concrete walls and slabs, are adopted by many high-rise apartment buildings recently constructed in Korea. In the buildings, one or more relatively large openings are cut in a shear wall for functional reasons. The openings influence the internal stress of the shear wall and also the structural behavior. Therefore, it is necessary to use subdivided plate elements for accurate analysis of the box system with openings. But it would cost tremendous amount of analysis time and computer memory if the shear wall is subdivided into a finer mesh in the analysis of high-rise buildings. So, it is difficult to apply this modeling method to practical procedure. In this study, an efficient method is proposed for the efficient and accurate analysis of shear wall with openings. The proposed method used the super element and matrix condensations, fictitious beam technique.

  • PDF

무보강 강판 전단벽의 비선형 해석 (A Nonlinear Analysis of Un-stiffened Steel Shear Wall)

  • 윤명호
    • 한국디지털건축인테리어학회논문집
    • /
    • 제3권2호
    • /
    • pp.47-54
    • /
    • 2003
  • A Steel plate shear wall can be used as one of the lateral force resistant elements in buildings. It have many advantages from a structural point of view such as ductility, energy absorption capacity and initial stiffness etc. In this study to grasp the behavior of steel plate shear wall considering material and geometrical non-linearity, the FEM analyses were carried out using ANSYS(ver. 5.6) program. The analysis results were fully discussed and compared with test results to verify the validity of analysis method. The object of this study is to find out analytically the elasto-plastic behavior of un-stiffened steel plate shear wall.

  • PDF

뉴턴유체와 혈액의 맥동유동시 탄성혈관의 운동이 벽면전단응력분포에 미치는 영향 (Effects of Elastic Blood Vessel Motions on the Wall Shear Stresses for Pulsatile Flow of a Newtonian Fluid and Blood)

  • 노형운;김재수;박길문;서상호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.318-323
    • /
    • 2001
  • Characteristics of the pulsatile flow in a 3-dimensional elastic blood vessel are investigated to understand the blood flow phenomena in the human body arteries. In this study, a model for the elastic blood vessel is proposed. The finite volume prediction is used to analyse the pulsatile flow in the elastic blood vessel. Variations of the pressure, velocity and wall shear stress of the pulsatile flow in the elastic blood vessel are obtained. The magnitudes of the velocity waveforms in the elastic blood vessel model are larger than those in the rigid blood vessel model. The wall shear stresses on the elastic vessel vary with the blood vessel motions. Amplitude indices of the wall shear stress for blood in the elastic blood vessel are $4\sim5$ times larger than those of the Newtonian fluid. As the phase angle increased, point of the phase angle is are moved forward and the wall shear stresses are increased for blood and the Newtonian fluid.

  • PDF

Seismic behavior of energy dissipation shear wall with CFST column elements

  • Su, Hao;Zhu Lihua;Wang, Yaohong;Feng, Lei;Gao, Zeyu;Guo, Yuchen;Meng, Longfei;Yuan, Hanquan
    • Steel and Composite Structures
    • /
    • 제43권1호
    • /
    • pp.55-66
    • /
    • 2022
  • To develop high-efficiency lateral force resistance components for high-rise buildings, a novel energy dissipation shear wall with concrete-filled steel tubular (CFST) column elements was proposed. An energy dissipation shear wall specimen with CFST column elements (GZSW) and an ordinary reinforced concrete shear wall (SW) were constructed, and experimented by low-cycle reversed loading. The mechanical characteristics of these two specimens, including the bearing capacity, ductility, energy dissipation, and stiffness degradation process, were analyzed. The finite-element model of the GZSW was established by ABAQUS. Based on this finite-element model, the effect of the placement of steel-plate energy dissipation connectors on the seismic performance of the shear wall was analyzed, and optimization was performed. The experiment results prove that, the GZSW exhibited a superior seismic performance in terms of bearing capacity, ductility, energy dissipation, and stiffness degradation, in comparison with the SW. The results calculated by the ABAQUS finite-elements model of GZSW corresponded well with the results of experiment, and it proved the rationality of the established finite-elements model. In addition, the optimal placement of the steel-plate energy dissipation connectors was obtained by ABAQUS.

반복-횡력을 받는 조적벽 골조와 전단벽 골조의 내력 및 연성에 관한 실험적 연구 (Experimental Study of Strength and Ductility on Masonry Wall Frame and Shear Wall Frame Subjected to Cyclic Lateral Loading)

  • 이호;변상민;정환목;이택운
    • 한국공간구조학회논문집
    • /
    • 제13권2호
    • /
    • pp.83-91
    • /
    • 2013
  • The core aim of this dissertation is to empirically scrutinize a strength characteristic of beam-column frame subjected to the cyclic lateral load, a beam-column frame of un-reinforced masonry wall, and a shear wall frame. First and foremost, I embark upon making three prototypes vis-$\grave{a}$-vis this research. By conducting this process, I touch on an analysis of cyclic behavior and a damage characteristic of the beam-column frame, the beam-column frame of un-reinforced masonry wall, and the shear wall frame. What is more, through the previous procedure, the next part delves into the exact stress transfer path and the destructive mechanism to examine how much and how strong the beam-column frame of un-reinforced Masonry Wall does have a resistance capacity against earthquake in all the architecture constructed by the above-mentioned frame, as well as school buildings. In addition to the three prototypes, two more experimental models, a beam-column frame and shear wall frame, are used to compare with the beam-column frame of un-reinforced masonry wall. Lastly, the dissertation will suggest some solutions to improve the resistance capacity against earthquake regarding all constructions built with non bearing wall following having examining precisely all the analysis with regard to not only behavior properties and the damage mechanism of the beam-column frame and the beam-column frame of un-reinforced Masonry Wall but also the resistance capacity against earthquake of non bearing wall and school buildings.

식생블록옹벽의 구조적 안전성 해석과 보강설계기법 연구 (Development of Strengthening Method and Safety Analysis of Ecological Block and Vegetation Bank Protection)

  • 오병환;조인호;이영생;이근희
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제7권1호
    • /
    • pp.207-215
    • /
    • 2003
  • Developed is a new environment-friendly concrete-block retaining wall system. The conventional analysis methods are not directly applicable because the proposed concrete-block wall system is made of by interlocking the blocks with shear keys. Therefore, the shear analysis as well as stability analysis have been conducted to secure the safety of block-wall system. Overall slope stability analysis was also performed. An appropriate strengthening method was developed to ensure the safety when the block-wall system is relatively high. The method of analysis for strengthening the concrete-block wall system was also proposed. The proposed environment-friendly concrete block retaining wall system shows reasonable safety and can be a good construction method for retaining walls and river bank walls.

Behavior of continuous RC deep girders that support walls with long end shear spans

  • Lee, Han-Seon;Ko, Dong-Woo;Sun, Sung-Min
    • Structural Engineering and Mechanics
    • /
    • 제38권4호
    • /
    • pp.385-403
    • /
    • 2011
  • Continuous deep girders which transmit the gravity load from the upper wall to the lower columns have frequently long end shear spans between the boundary of the upper wall and the face of the lower column. This paper presents the results of tests and analyses performed on three 1:2.5 scale specimens with long end shear spans, (the ratios of shear-span/total depth: 1.8 < a/h < 2.5): one designed by the conventional approach using the beam theory and two by the strut-and-tie approach. The conclusions are as follows: (1) the yielding strength of the continuous RC deep girders is controlled by the tensile yielding of the bottom longitudinal reinforcements, being much larger than the nominal strength predicted by using the section analysis of the girder section only or using the strut-and-tie model based on elastic-analysis stress distribution. (2) The ultimate strengths are 22% to 26% larger than the yielding strength. This additional strength derives from the strain hardening of yielded reinforcements and the shear resistance due to continuity with the adjacent span. (3) The pattern of shear force flow and failure mode in shear zone varies depending on the amount of vertical shear reinforcement. And (4) it is necessary to take into account the existence of the upper wall in the analysis and design of the deep continuous transfer girders that support the upper wall with a long end shear span.

전단벽 구조물의 풍응답 저감을 위한 LRB의 적용 (Application of LRBs for Reduction of Wind-Induced Responses of Coupled Shear Wall Structures)

  • 박용구;김현수;고현;김민균;이동근
    • 한국공간구조학회논문집
    • /
    • 제11권1호
    • /
    • pp.47-56
    • /
    • 2011
  • 일반적으로 전단벽은 횡력저항 요소로서 널리 이용되고 있다. 대부분의 전단벽 구조물은 통로의 목적으로 개구부를 필요로 하게 되고 전단벽들 사이가 슬래브나 연결보로 연결된 병렬전단벽의 형태를 띠게 된다. 본 연구에서는 병렬전단벽 구조물의 연결보 중앙부에 LRB(Lead Rubber Bearing)를 도입하였고 이 시스템의 풍응답 저감성능을 검토하였다. 제안된 방법의 효과를 살펴보기 위하여 20층 및 30층 예제구조물을 구성하였고 인공풍하중을 작성하여 경계비선형 시간이력해석을 수행하였다. 제안된 방법이 풍하중을 받는 고층 병렬전단벽 구조물의 사용성 향상에 도움을 줄 수 있는지 평가하기 위하여 일본 진동성능평가기준을 적용하여 보았다. 해석결과 본 논문에서 제안하는 LRB를 사용하여 병렬전단벽을 연결하는 방식이 풍응답 제어성능 개선에 효과가 있는 것을 확인할 수 있었다.