• Title/Summary/Keyword: Shear Stiffness

Search Result 1,597, Processing Time 0.022 seconds

Behavior of Shear Yielding Thin Steel Plate Wall with Tib (리브로 보강한 전단 항복형 강판벽의 거동)

  • Yun, Myung Ho;Wi, Ji Eun;Lee, Myung Ho;Oh, Sang Hoon;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.503-511
    • /
    • 2001
  • Structures are designed against earthquakes and reinforced concrete shear walls or steel bracings are usually used as aseismic resistant element. However their hysteretic characteristics in plastic region ductility and capacity of energy absorption are not always good. Besides their stiffness is so rigid that structure designed by static analysis is occasionally disadvantageous. when dynamically analized. Generally a steel plate subjected to shear force has a good deformation capacity Also it has been considered to retain comparative shear strength and stiffness Steel shear wall can be used as lateral load resistant element for seismic design. However there was little knowledge concerning shear force-deformation characteristics of steel plates up to their collapse state In this study a series of shear loading tests of steel plate collapse state. In this study a series of shear loading tests of steel plate surrounded by vertical and horizontal ribs were conducted with the parameters of D/H ratios rib type and the loading patterns. The test result is discussed and analyzed to obtain several restoring characteristics. that is shear force-deformation stiffness and yield strength etc.

  • PDF

An experimental study on adjusting mechanism of Remote Center Compliance for assembly robots with shear stress control of Elastomer Shear Pads(ESP) (ESP의 전단 변형을 이용한 원격 순응 중심 장치의 순응 중심 조절 방법에 관한 실험적 고찰)

  • Lee, Sang-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.9
    • /
    • pp.910-914
    • /
    • 2007
  • In this paper, an experimental study is performed to adjust position of compliance center of Elastomer Shear Pad Remote Center Compliance (ESP RCC) device, which is used on precise peg in hole process. In the study, variation of the lateral/axial stiffness of the ESP is proposed as a control parameter to adjust the position of compliance center of the ESP RCC. The variation of the stiffness of the ESP is achieved by controlling the shear stress of the ESP. To control the shear stress of the ESP, position of top side of the ESP is changed while remaining bottom side of the ESP is fixed on the RCC plate. To evaluate effect of the proposed idea, stiffness variations of the ESP on various shear stresses are measured, and variation of the compliance center is measured with the ESP RCC that can control the position of compliance center by using the shear stress. The measured data shows unique characteristics that have not been shown in other types of ESP VRCCs.

Dynamic analysis and shear connector damage identification of steel-concrete composite beams

  • Hou, Zhongming;Xia, He;Zhang, YanLing
    • Steel and Composite Structures
    • /
    • v.13 no.4
    • /
    • pp.327-341
    • /
    • 2012
  • With the advantages of large span, light deadweight and convenient construction, the steel-concrete composite beam (SCCB) has been rapidly developed as a medium span bridge. Compared with common beams, the global stiffness of SCCB is discontinuous and in a staged distribution. In this paper, the analysis model for the simply-supported SCCB is established and the vibration equations are derived. The natural vibration characteristics of a simply-supported SCCB are analyzed, and are compared with the theoretical and experimental results. A curvature mode measurement method is proposed to identify the shear connector damage of SCCB, with the stiffness reduction factor to describe the variation of shear connection stiffness. By analysis on the $1^{st}$ to $3^{rd}$ vertical modes, the distribution of shear connectors between the steel girder and the concrete slab are well identified, and the damage locations and failure degrees are detected. The results show that the curvature modes can be used for identification of the damage location.

Effect of raft and pile stiffness on seismic response of soil-piled raft-structure system

  • Saha, Rajib;Dutta, Sekhar C.;Haldar, Sumanta
    • Structural Engineering and Mechanics
    • /
    • v.55 no.1
    • /
    • pp.161-189
    • /
    • 2015
  • Soil-pile raft-structure interaction is recognized as a significant phenomenon which influences the seismic behaviour of structures. Soil structure interaction (SSI) has been extensively used to analyze the response of superstructure and piled raft through various modelling and analysis techniques. Major drawback of previous study is that overall interaction among entire soil-pile raft-superstructure system considering highlighting the change in design forces of various components in structure has not been explicitly addressed. A recent study addressed this issue in a broad sense, exhibiting the possibility of increase in pile shear due to SSI. However, in this context, relative stiffness of raft and that of pile with respect to soil and length of pile plays an important role in regulating this effect. In this paper, effect of relative stiffness of piled raft and soil along with other parameters is studied using a simplified model incorporating pile-soil raft and superstructure interaction in very soft, soft and moderately stiff soil. It is observed that pile head shear may significantly increase if the relative stiffness of raft and pile increases and furthermore stiffer pile group has a stronger effect. Outcome of this study may provide insight towards the rational seismic design of piles.

Seismic behavior of RC frames with partially attached steel shear walls: A numerical study

  • Kambiz Cheraghi;Majid Darbandkohi;Mehrzad TahamouliRoudsari;Sasan Kiasat
    • Earthquakes and Structures
    • /
    • v.25 no.6
    • /
    • pp.443-454
    • /
    • 2023
  • Steel shear walls are used to strengthen steel and concrete structures. One such system is Partial Attached Steel Shear Walls (PASSW), which are only connected to frame beams. This system offers both structural and architectural advantages. This study first calibrated the numerical model of RC frames with and without PASSW using an experimental sample. The seismic performance of the RC frame was evaluated by 30 non-linear static analyses, which considered stiffness, ductility, lateral strength, and energy dissipation, to investigate the effect of PASSW width and column axial load. Based on numerical results and a curve fitting technique, a lateral stiffness equation was developed for frames equipped with PASSW. The effect of the shear wall location on the concrete frame was evaluated through eight analyses. Nonlinear dynamic analysis was performed to investigate the effect of the shear wall on maximum frame displacement using three earthquake records. The results revealed that if PASSW is designed with appropriate stiffness, it can increase the energy dissipation and ductility of the frame by 2 and 1.2 times, respectively. The stiffness and strength of the frame are greatly influenced by PASSW, while axial force has the most significant negative impact on energy dissipation. Furthermore, the location of PASSW does not affect the frame's behavior, and it is possible to have large openings in the frame bay.

Shear behavior of multi-hole perfobond connectors in steel-concrete structure

  • Xing, Wei;Lin, Xiao;Shiling, Pei
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.983-1001
    • /
    • 2015
  • This study focuses on the load carrying capacity and the force transfer mechanism of multi-hole perfobond shear connectors in steel-concrete composite structure. The behavior of multi-hole perfobond shear connector is more complicated than single-hole connector cases. 2 groups push-out tests were conducted. Based on the test results, behavior of the connection was analyzed and the failure mechanism was identified. Simplified iterative method and analytic solution were proposed based on force equilibrium for analyzing multi-hole perfobond shear connector performance. Finally, the sensitivity of design parameters of multi-hole perfobond shear connector was investigated. The results of this research showed that shear force distribution curve of multi-hole perfobond shear connector is near catenary. Shear forces distribution were determined by stiffness ratio of steel to concrete member, stiffness ratio of shear connector to steel member, and number of row. Efficiency coefficient was proposed to should be taking into account in different limit state.

Finite Elerllent Analysis of the Pull-out Test

  • Yi, Chang-Tok
    • Geotechnical Engineering
    • /
    • v.12 no.3
    • /
    • pp.49-62
    • /
    • 1996
  • The pull-out test is a common test for detemining the strength and deformation parameters between reinforcement and soil inl the design of reinforced earth structures. It is often assumed in the interpretation of the results from the test that the mobilization of shear strength along the reinforcement is uniform. The progressive shearing at the soil-reinforcement interface during the pull-out test often leads to incorrect calculation of the shear displacement response between the reinforcement and the soil. To investigate the effect of progressive shearing during the calculation of the shear stiffness of the soil-reinforcement interface, the finite element method is used to simulate the pullout test. The reinforcement, soil and interface behaviors are modeled by rosing linear and non-linear constitutive models. Shear stiffnesses are calculated by uaiHg conventional methods. It is found that there are considerable discrepancies 13etween the calculated shear stiffnesses and the correct stiffnesses which are used in the finite element analysis. The amount of error depends on the relative stiffness between reinforcement and soil and the size of the specimen being analyzed. The finite element results are also compared with the observed response from laboratory experiments. A revised interpretation of the pull-out test results is discussed.

  • PDF

Stiffness Degradation Induced by Seismic Loading on a RC Shear Wall (지진하중에 의한 철근콘크리트 전단벽의 강성 저하에 관한 연구)

  • Lee, Yun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.48-54
    • /
    • 2022
  • This research describes a quantitative procedure used to estimate the effect of concrete cracking on stiffness degradation of concrete shear walls and provides analytical references for the seismic design of concrete shear walls. As preliminary research on the seismic response of concrete shear walls, nonlinear transient analysis was performed with commercial FE software. The study presents the nonlinear time history analysis results in terms of concrete damage and cracking behavior induced by seismic input motions. By varying the input motions, concrete strength and shear wall thickness, the seismic responses of a shear wall were examined with nonlinear time history analysis, and the progressive cracking behavior and corresponding hysteresis loop were described. Based on the analysis results, frequency and stiffness degradation of the shear wall from progressive concrete damage and cracking were captured with respect to the seismic levels. The results of this study suggest that stiffness degradation from concrete cracking should be appropriately considered when determining the seismic capacity of RC shear wall structures.

Structural Effect on Curtailment of Upper Shear Wall in Frame-Shear Wall Structure (골조-전단벽 구조에서 상부 전단벽 미배치의 구조효과)

  • Kim, Hyong-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.18-25
    • /
    • 2016
  • This research purposed to study a structural effect on curtailment of upper shear wall in frame-shear wall structures, using MIDAS-Gen. In this study, the analysis variables were the story number of curtailment of upper shear wall, change of column section in every 2 stories and change of shear wall thickness in every 2 stories. In order to analyse a structural effect on curtailment of upper shear wall in frame-shear wall structures, we studied the distribution of shear force and overturning moment according to curtailment of shear wall, the inflection point of shear wall from shear force/overturning moment and the lateral stiffness. The results of study proposed the quantitative influence that the curtailment of upper shear wall in frame-shear wall structures had on the structural performance such as lateral stiffness. Furthermore, it is verified that the results of study can be very helpful in catching the materials on the structure design for a reasonable frame-shear wall system.

Effective Stiffness of Composite Beams Considering Shear Slip Effects (전단슬립 효과를 고려한 합성보의 유효강성)

  • Heo, Byung Wook;Bae, Kyu Woong;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.671-682
    • /
    • 2004
  • This study investigated the effects of a shear slip on the deflection of steel-concretecomposite beams with partial shear interaction. Under the guidance of various current design codes, this deflection was related to the strength of shear connectors in the composite beams. In this paper, a shear connector stiffness based on exact solutions, regardless of loading conditions, was developed. The equivalent rigidity of composite beams that considered three different loading types was first derived, based on equilibrium and curvature compatibility, from which a general formula accounting for slips was developed. To validate this approach, the predicted maximum deflection under the proposed method was compared against currently used equations to calculate beam effective stiffness (AISC)Nie's equations, which have recently been proposed. For typical beams that were used in practice, shear slips might result in stiffness reduction of up to 18% for short-span beams. For full composite sections, the effective section modulus with the AISC specifications was larger than that of the present study, which meant that the specifications were not conservative. For partial composite sections, the AISC predictions were more conservative than those in the present study.