• 제목/요약/키워드: Shear Stiffness

검색결과 1,634건 처리시간 0.025초

Determination of shear stiffness for headed-stud shear connectors using energy balance approach

  • Ye, Huawen;Huang, Ruosen;Tang, Shiqing;Zhou, Yu;Liu, Jilin
    • Steel and Composite Structures
    • /
    • 제42권4호
    • /
    • pp.477-487
    • /
    • 2022
  • The shear stiffness of headed-stud shear connectors has no unified definition due to the nonlinear characteristics of its load-slip relationship. A unified framework was firstly adopted to develop a general expression of shear load-slip equation for headed-stud shear connectors varying in a large parameter range based on both force and energy balance. The pre- and post-yield shear stiffness were then determined through bilinear idealization of proposed shear load-slip equation. An updated and carefully selected push-out test database of 157 stud shear connectors, conducting on studs 13~30mm in diameter and on concretes 30~180 MPa in cubic compressive strength, was used for model regression and sensitivity analysis of shear stiffness. An empirical calculation model was also established for the stud shear stiffness. Compared with the previous models through statistical analysis, the proposed model demonstrates a better performance to predict the shear load-slip response and stiffness of the stud shear connectors.

Predicting the stiffness of shear diaphragm panels composed of bridge metal deck forms

  • Egilmez, Oguz O.
    • Steel and Composite Structures
    • /
    • 제24권2호
    • /
    • pp.213-226
    • /
    • 2017
  • The behavior of building industry metal sheeting under shear forces has been extensively studied and equations have been developed to predict its shear stiffness. Building design engineers can make use of these equations to design a metal deck form bracing system. Bridge metal deck forms differ from building industry forms by both shape and connection detail. These two factors have implications for using these equations to predict the shear stiffness of deck form systems used in the bridge industry. The conventional eccentric connection of bridge metal deck forms reduces their shear stiffness dramatically. However, recent studies have shown that a simple modification to the connection detail can significantly increase the shear stiffness of bridge metal deck form panels. To the best of the author's knowledge currently there is not a design aid that can be used by bridge engineers to estimate the stiffness of bridge metal deck forms. Therefore, bridge engineers rely on previous test results to predict the stiffness of bridge metal deck forms in bracing applications. In an effort to provide a design aid for bridge design engineers to rely on bridge metal deck forms as a bracing source during construction, cantilever shear frame test results of bridge metal deck forms with and without edge stiffened panels have been compared with the SDI Diaphragm Design Manual and ECCS Diaphragm Stressed Skin Design Manual stiffness expressions used for building industry deck forms. The bridge metal deck form systems utilized in the tests consisted of sheets with thicknesses of 0.75 mm to 1.90 mm, heights of 50 mm to 75 mm and lengths of up to 2.7 m; which are representative of bridge metal deck forms frequently employed in steel bridge constructions. The results indicate that expressions provided in these manuals to predict the shear stiffness of building metal deck form panels can be used to estimate the shear stiffness of bridge metal deck form bracing systems with certain limitations. The SDI Diaphragm Design Manual expressions result in reasonable estimates for sheet thicknesses of 0.75 mm, 0.91 mm, and 1.21 mm and underestimate the shear stiffness of 1.52 and 1.90 mm thick bridge metal deck forms. Whereas, the ECCS Diaphragm Stressed Skin Design Manual expressions significantly underestimate the shear stiffness of bridge metal deck form systems for above mentioned deck thicknesses.

Experimental study on shear damage and lateral stiffness of transfer column in SRC-RC hybrid structure

  • Wu, Kai;Zhai, Jiangpeng;Xue, Jianyang;Xu, Fangyuan;Zhao, Hongtie
    • Computers and Concrete
    • /
    • 제23권5호
    • /
    • pp.335-349
    • /
    • 2019
  • A low-cycle loading experiment of 16 transfer column specimens was conducted to study the influence of parameters, likes the extension length of shape steel, the ratio of shape steel, the axial compression ratio and the volumetric ratio of stirrups, on the shear distribution between steel and concrete, the concrete damage state and the degradation of lateral stiffness. Shear force of shape steel reacted at the core area of concrete section and led to tension effect which accelerated the damage of concrete. At the same time, the damage of concrete diminished its shear capacity and resulted in the shear enlargement of shape steel. The interplay between concrete damage and shear force of shape steel ultimately made for the failures of transfer columns. With the increase of extension length, the lateral stiffness first increases and then decreases, but the stiffness degradation gets faster; With the increase of steel ratio, the lateral stiffness remains the same, but the degradation gets faster; With the increase of the axial compression ratio, the lateral stiffness increases, and the degradation is more significant. Using more stirrups can effectively restrain the development of cracks and increase the lateral stiffness at the yielding point. Also, a formula for calculating the yielding lateral stiffness is obtained by a regression analysis of the test data.

New Evaluation and Test of Sidewall's Rotational Stiffness of Radial Tire

  • Kim Young-Woo;Kim Yong-Sung
    • Journal of Mechanical Science and Technology
    • /
    • 제20권6호
    • /
    • pp.748-758
    • /
    • 2006
  • In this paper, we have revisited the estimation of the rotational stiffness of sidewall of radial tire and have suggested a new method for evaluation of the rotational stiffness. Since thicknesses, and volume fractions of the constituents of sidewall are varied depending on radial position, the equivalent shear modulus of the sidewall also depends on radial position. For the estimation of rotational stiffness of sidewall's rubber, we have divided its cross-section into sufficient numbers of small parts and have calculated the equivalent shear modulus of each part of sidewall. Using the shear moduli of divided parts, we have obtained the rotational stiffness by employing in-plane shear deformation theory. This method is expected to be a useful tool in tire design since it relates such basic variables to the global stillness of tire. Applying the calculation method to a radial tire of P205/60R15, we have compared its rotational stiffness with experimental one.

Shear stiffness of headed studs on structural behaviors of steel-concrete composite girders

  • He, Jun;Lin, Zhaofei;Liu, Yuqing;Xu, Xiaoqing;Xin, Haohui;Wang, Sihao
    • Steel and Composite Structures
    • /
    • 제36권5호
    • /
    • pp.553-568
    • /
    • 2020
  • Steel-concrete composite structures have been extensively used in building, bridges, and other civil engineering infrastructure. Shear stud connectors between steel and concrete are essential in composite members to guarantee the effectiveness of their behavior in terms of strength and deformability. This study focuses on investigating the shear stiffness of headed studs embedded in several types of concrete with wide range of compressive strength, and their effects on the elastic behavior of steel-concrete composite girders were evaluated. Firstly, totally 206 monotonic push-out tests from the literature were reviewed to investigate the shear stiffness of headed studs embedded in various types of concrete (NC, HPC, UHPC etc.). Shear stiffness of studs is defined as the secant stiffness of the load-slip curve at 0.5Vu, and a formulation for predicting defined shear stiffness in elastic state was proposed, indicating that the stud diameter and the elastic modulus of steel and concrete are the main factors. And the shear stiffness predicted by the new formula agree well with test results for studs with a diameter ranging from 10 to 30 mm in the concrete with compressive strength ranging from 22.0 to 200.0MPa. Then, the effects of shear stiffness on the elastic behaviors of composite girders with different sizes and under different loading conditions were analyzed, the equations for calculating the stress and deformation of simply supported composite girders considering the influence of connection's shear stiffness were derived under different loading conditions using classical linear partial-interaction theory. As the increasing of shear stiffness, the stress and deflection at the most unfavorable section under partial connected condition tend to be those under full connected condition, but the approaching speed decreases gradually. Finally, the connector's shear stiffness was recommended for fully connection in composite girders with different dimensions under different loading conditions. The findings from present study may provide a reference for the prediction of shear stiffness for headed studs and the elastic design of steel-concrete composite girder.

Effect of silicone rubber-sleeve mounted on shear studs on shear stiffness of steel-concrete composite structures

  • Yang, Chang;Yang, Decan;Huang, Caiping;Huang, Zhixiang;Ouyang, Lizhi;Onyebueke, Landon;Li, Lin
    • Steel and Composite Structures
    • /
    • 제44권5호
    • /
    • pp.741-752
    • /
    • 2022
  • Earlier works have shown that excessive shear stiffness at the steel-concrete interface causes a non-uniform distribution of shear force in composite structures. When the shear studs are wrapped at the fixed end with flexible materials with a low elastic modulus, the shear stiffness at the interface is reduced. The objective of this study was to investigate the effect of silicone rubber-sleeve mounted on shear studs on the shear stiffness of steel-concrete composite structures. Eighteen push-out tests were conducted to investigate the mechanical behavior of silicone rubber-sleeved shear stud groups (SRS-SSG). The dimension and arrangement of silicon rubber-sleeves (SRS) were taken into consideration. Test results showed that the shear strength of SRS-SSG was higher than that of a shear stud group (SSG), without SRS. For SRS-SSG with SRS heights of 50 mm, 100 mm, 150 mm, the shear strengths were improved by 13%, 20% and 9%, respectively, compared to the SSG alone. The shear strengths of SRS-SSG with the SRS thickness of 2 mm and 4 mm were almost the same. The shear stiffness of the SRS-SSG specimens with SRS heights of 50 mm, 100 mm and 150 mm were 77%, 67% and 66% of the SSG specimens, respectively. Test results of specimens SSG-1 and predicted values based on the three design specifications were compared. The nominal single stud shear strength of SSG-1 specimens was closest to that calculated by the Chinese Code for Design of Steel Structures (GB50017-2017). An equation is proposed to consider the effects of SRS for GB50017-2017, and the predicted values based on the proposed equation agree well with the tested results of SRS-SSG.

응력, 하중, 변위제어 방식의 암석 절리면 전단시험기의 개발 (Development of Stress, Load and Displacement Controlled Direct Shear Apparatus for Jointed Rock)

  • 김대영;천병식;서영호;이영남
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.471-477
    • /
    • 1999
  • A new stress, load and displacement controlled direct shear apparatus has recently been developed at the Hyundai Institute of Construction Technology This direct shear apparatus is capable of testing of rock joint under constant normal stiffness, constant normal stress or constant normal load boundary conditions. This paper describes this direct shear apparatus and illustrates results of shear tests at constant normal stress condition, constant normal load condition and constant normal stiffness condition with dental stones which have a same joint roughness and unconfined compressive strength.

  • PDF

기계 조인트의 전단 컨택 특성 측정 (Measurement of Shear Contact Characteristics on Mechanical Joints)

  • 이철희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1350-1353
    • /
    • 2007
  • An experimental method based on contact resonance is developed to extract the contact parameters of mechanical joints under various clamped conditions. Mechanical joint parameters of shear contact stiffness and damping were extracted for different physical joint parameters such as surface finish of the mating surfaces, the presence of lubrication, the effect of the clamping pressure, and shear load. It was found that the shear contact stiffness values decreased with increasing clamping load and increased with increasing shear loading. Contact damping ratio values were almost constant with clamping load, but decreased with increasing shear load. Moreover, rough surfaces exhibited the highest shear stiffness and contact damping compared to smooth surfaces.

  • PDF

프리캐스트 바닥판 교량 전단연결부의 전단강성 (Shear Stiffness of Shear connections in Full-Depth Precast Concrete Deck Bridge)

  • 심창수;정철헌;김철영;장승필
    • 한국강구조학회 논문집
    • /
    • 제10권4호통권37호
    • /
    • pp.749-758
    • /
    • 1998
  • 현장타설 콘크리트 바닥판 교량의 전단연결부의 강성 평가를 분석하고 프리캐스트 콘크리트 바닥판 교량의 전단연결부의 강성을 평가하기 위한 실험을 통해 전단강성을 구하였다. 전단연결부 채움재료의 강도특성에 대한 변수연구와 국부적인 응력분포를 파악하기 위하여 push-out 실험부재에 대한 3차원 유한요소해석을 수행하였다. 해석을 통해 구한 하중-슬립관계를 실험에서 구한 것과 비교하여 타당성을 검증하고 프리캐스트 바닥판 교량 전단연결부의 초기 강성에 대한 평가식을 제안하였다. 선형해석을 수행하여 전단연결재 지름과 모르터의 강도에 따른 손상의 양상과 전단연결재와 무수축모르터에 각각 파괴기준을 적용하여 파괴하중을 예측하고 실험값과 비교하였다.

  • PDF

Effect of creep and shrinkage in a class of composite frame - shear wall systems

  • Sharma, R.K.;Maru, Savita;Nagpal, A.K.
    • Steel and Composite Structures
    • /
    • 제3권5호
    • /
    • pp.333-348
    • /
    • 2003
  • The behaviour of composite frame - shear wall systems with regard to creep and shrinkage with high beam stiffness has been largely unattended until recently since no procedure has been available. Recently an accurate procedure, termed the Consistent Procedure (CP), has been developed which is applicable for low as well as for high beam stiffness. In this paper, CP is adapted for a class of composite frame - shear wall systems comprising of steel columns and R.C. shear walls. Studies are reported for the composite systems with high as well as low beam stiffness. It is shown that considerable load redistribution occurs between the R.C. shear wall and the steel columns and additional moments occur in beams. The magnitude of the load redistribution and the additional moment in the beams depend on the stiffness of the beams. It is also shown that the effect of creep and shrinkage are greater for the composite frame - shear wall system than for the equivalent R.C. frame - shear wall system.