• Title/Summary/Keyword: Shear Line Method

Search Result 106, Processing Time 0.026 seconds

Determination of Critical State Parameters in Sandy Soils from Standard Triaxial Testing (II) : Experiment and Recommendation (표준삼축시험으로부터 사질토에서의 한계상태정수 결정에 관한 연구 (II) : 실험 및 추천)

  • 조계춘
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.77-92
    • /
    • 2003
  • A set of standard triaxial testing was performed to identify underlying physical processes and inherent limitations in the determination of critical state parameters in sandy soils. The experimental test results showed that the critical state friction angle for a given soil is constant regardless of drainage condition while the critical state line on the e-log p'space is significantly affected by drainage condition mainly because of insufficient strain attained in standard triaxial tests and strain localization effects in udrained tests. It appeared that the best method to determine critical state parameters in laboratory testing is to use homogeneous loose specimens under drained shear condition. In addition, a reference state parameter was suggested to design tests that will avoid dilatancy or strain localization effects in drained tests.

Finite Element Simulation of Laser-Generated Ultrasound and Interaction with Surface Breaking Cracks (유한요소법을 이용한 레이저 유도 초음파와 표면 균열과의 상호작용 모델링)

  • Jeong, Hyun-Jo;Park, Moon-Cheol
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.3
    • /
    • pp.259-267
    • /
    • 2004
  • A finite element method is used to simulate interaction of laser-based ultrasounds with surface breaking tracks in elastic media. The laser line source focused on the surface of semi-infinite medium is modeled as a shear dipole in 2-D plane strain finite elements. The shear dipole-finite clement model is found to give correct directivity patterns for generated longitudinal and shear waves. The interaction of surface waves with surface breaking cracks (2-D machined slot) is considered in two ways. Both the source and receiver are fixed with respect to the cracks in the first case, while the source is moving in another case. It is shown that the crack depth tested in the range of 0.3-5.0mm $({\lambda}_R/d=0.21{\sim}3.45)$ can be measured using the corner reflected waves produced by the fixed laser source. The moving laser source is found to cause a large amplitude change of reflected waves near crack, and the crack whose depth is one order lower than the wavelength ran be detected from this change.

Evaluation of Near Subsurface 2D Vs Distribution Map using SPT-Uphole Tomography Method (SPT-업홀 토모그래피 기법을 이용한 지반의 2차원 전단파 속도 분포의 도출)

  • Bang, Eun-Seok;Kim, Jong-Tae;Kim, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3C
    • /
    • pp.143-155
    • /
    • 2006
  • SPT-Uphole tomography method was introduced for the evaluation of near subsurface shear wave velocity (Vs) distribution map. In SPT-Uphole method, SPT (Standard Penetration Test) which is common in geotechnical site investigation was used as a source and several surface geophones in line were used as receivers. Vs distribution map which is the triangular shape around the boring point can be developed by tomography inversion. To obtain the exact travel time information of shear wave component, a procedure using the magnitude summation of vertical and horizontal components was used based on the evaluation of particle motion at the surface. It was verified that proposed method could give reliable Vs distribution map through the numerical study using the FEM (Finite Element Method) model. Finally, SPT-Uphole tomography method was performed at the weathered soil site where several boring data with SPT-N values are available, and the feasibility of proposed method was verified in the field.

Numerical Analysis on the Effect of Flow Rate Variation in Double-Suction Centrifugal Pump (양흡입 원심펌프에 있어서 유량변화의 영향에 관한 수치해석적 연구)

  • An, Young-Joon;Shin, Byeong-Rog
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.6
    • /
    • pp.51-56
    • /
    • 2010
  • A numerical simulation is carried out to investigate the effect of flow rate variation and performance characteristics of double-suction centrifugal pump. Two types of pump which have different impeller inlet breadth and curvature of the shroud line consist of six blades impeller and shroud ring. Finite-volume method with structured mesh and $k-\omega$ Shear Stress Transport turbulence model was used to guaranty more accurate prediction of turbulent flow in the pump impeller. Total head, power and overall efficiency were calculated to obtain performance characteristics of two types of pump according to the variation of flow rate. From the results, impeller having smooth curve along the shroud line obtained good performance. The lower flow rate, the more circulation region, flow unsteadiness and complicate flow pattern are observed. Complicated internal flow phenomena through impellers such as flow separation, pressure loss, flow unsteadiness and performance are investigated and discussed.

A Study on the Composite Behavior of Simply Supported Composite Girders Considering the Partial Interaction (불완전 합성율을 고려한 단순합성형의 합성거동에 관한 연구)

  • Yong, Hwan Sun;Kim, Seok Tae;Park, Jae Yil
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.543-555
    • /
    • 1997
  • Generally, in a steel-concrete composite gilder, the shear connector which was constructed between concrete deck and steel girder should have enough stiffness to behave as one body, because the conformity between plate and concrete deck is influences by the stiffness and spacing of the shear connectors. If the stiffness of shear connectors are insufficient, slip would happen at the contact surface. Partial interaction is the case that takes account of slips. In this paper, an easy method is presented to evaluate the stiffness or spacing of the shear connector according to the degree of imperfection without difficult calculations for a composite gilder with partial interaction. Also, the horizontal shearing force applied to the shear connector and the longitudinal axial force, which is occurs at contact surface between concrete deck and steel girder, have been presented in a simple influence line that is various to the parameters of sectional properties, degree of imperfection and applied load points. Furthermore, through the case study, it determined the relationships between the degree of imperfection and the follows 1) spring constants 2) axial force and horizontal shearing force 3) stress and neutral axis by using the partial differential equation based on Newmark's Partial Interaction Theory.

  • PDF

Measurement of Lattice Parameter of Primary Si crystal in Rheocast Hypereutectic Al-Si Alloy by Convergent Beam Electron Diffraction Technique (수렴성빔 전자회절법을 이용한 리오캐스팅시킨 과공정 Al-Si합금에서 실리콘초정의 격자상수 측정)

  • Lee, Jung-Ill;Kim, Gyeung-Ho;Lee, Ho-In
    • Applied Microscopy
    • /
    • v.25 no.3
    • /
    • pp.99-107
    • /
    • 1995
  • The morphological changes of primary solid particles as a function of process time on hypereutectic Al-15.5wt%Si alloy during semi-solid state processing with a shear rate of $200s^{-1}$ are studied. In this alloy, it was observed that primary Si crystals are fragmented at the early stage of stirring and morphologies of primary Si crystals change from faceted to spherical during isothermal shearing for 60 minutes. To understand the role of Al dissolved in the primary Si crystal by shear stress at high temperature, lattice parameters of the primary Si crystals are determined as a variation of high order Laue zone(HOLZ) line positions measured from convergent beam electron diffraction(CBED) pattern. The lattice parameter of the primary Si crystal in the rheocast Al-15.5wt%Si alloy shows tensile strain of about 5 times greater than that of the gravity casting. Increase of the lattice parameter by rheocasting is due to the increased amount of Al dissolved in the primary Si crystal accelerated by shear stress at high temperature. The amounts of solute Al in the primary Si crystal are measured quantitatively by EPMA method to confirm the CBED analysis.

  • PDF

The Effest of Matrix of Nodular Graphite Cast Iron on Machinability in Lathe Turning - Cutting Force, Cutting Ratio and Shear Angle- (球狀黑鉛鑄鐵의 其他組織이 切削性에 미치는 영향 I)

  • 성환태;안상욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.807-813
    • /
    • 1986
  • The orthogonal cutting method of the nodular graphite cast iron in the lathe turning, whose matrix were formulated under two kinds of annealing conditions, has been experimentally studied and the results investigated. The various characteristics of machinabilities of the nodular cast iron, depending upon its matrix, have been obtained from the results as follows. (1) As depth of cut increases, the cutting ratio and the shear angles tend to slightly increase, and as the containing quantity of ferrite matrix increases, they slightly decrease. (2) As depth of cut increases, the cutting force increases in an approximate straight line, and as the containing quantity of ferrite matrix increases, they decreases and the decreasing rate is about 20-30%. (3) As the containing quantity of ferrite matrix increases, the friction force acting on the tool face decreases and the decreasing rate is about 34-40% in case of the lower depth of cut, but in case of the higher depth of cut the decreasing rate is very small. (4) Both shearing force and vertical force show a lineal increases, and according as ferrite matrix increases there is a decrease by 25% in shearing force and a 12-25% decrease in vertical force. (5) Shearing speed and chip flow speed keep almost a constant value irrespective of matrix.

Flexural Capacity of Encased Composite Beam with Hollow Core PC Slabs (매입형 합성보의 휨 성능 평가 -속 빈 프리캐스트 콘크리트 슬래브와 비대칭 H형강 철골보-)

  • Heo, Byung Wook;Bae, Kyu Woong;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.587-598
    • /
    • 2004
  • In this study, an experiment was conducted on the Slim Floor system, using a hollow core PC slab, which could reduce the over-all depth of a composite beam. The Slim Floor system is a method used in steel frame multi-story building construction, in which the structural depth of each floor is minimized after incorporating the steel floor beams within the depth of the concrete floor slab. This experimental study focused on the flexural behavior of the partially connected Slim Floor system with asymmetric steel beams encased in hollow core PC slabs. Ten full-scale specimens were constructed and tested in this study, with different steel beam heights, hollow core PC slabs, slab widths, and PC slab bearings. Observations made in line with the experiments indicated that the degree of shear connection without additional shear connection was 0.48-0.98 times more than that of the full shear connection, due to inherent mechanical and chemical bond stress.

Behavior of lightweight aggregate concrete voided slabs

  • Adel A. Al-Azzawi;Ali O, AL-Khaleel
    • Computers and Concrete
    • /
    • v.32 no.4
    • /
    • pp.351-363
    • /
    • 2023
  • Reducing the self-weight of reinforced concrete structures problem is discussed in this paper by using two types of self-weight reduction, the first is by using lightweight coarse aggregate (crushed brick) and the second is by using styropor block. Experimental and Numerical studies are conducted on (LWAC) lightweight aggregate reinforced concrete slabs, having styropor blocks with various sizes of blocks and the ratio of shear span to the effective depth (a/d). The experimental part included testing eleven lightweight concrete one-way simply supported slabs, comprising three as reference slabs (solid slabs) and eight as styropor block slabs (SBS) with a total reduction in cross-sectional area of (43.3% and 49.7%) were considered. The holes were formed by placing styropor at the ineffective concrete zones in resisting the tensile stresses. The length, width, and thickness of specimen dimensions were 1.1 m, 0.6 m, and 0.12 m respectively, except one specimen had a depth of 85 mm (which has a cross-sectional area equal to styropor block slab with a weight reduction of 49.7%). Two shear spans to effective depth ratios (a/d) of (3.125) for load case (A) and (a/d) of (2) for load case (B), (two-line monotonic loads) are considered. The test results showed under loading cases A and B (using minimum shear reinforcement and the reduction in cross-sectional area of styropor block slab by 29.1%) caused an increase in strength capacity by 60.4% and 54.6 % compared to the lightweight reference slab. Also, the best percentage of reduction in cross-sectional area is found to be 49.7%. Numerically, the computer program named (ANSYS) was used to study the behavior of these reinforced concrete slabs by using the finite element method. The results show acceptable agreement with the experimental test results. The average difference between experimental and numerical results is found to be (11.06%) in ultimate strength and (5.33%) in ultimate deflection.

Experimental investigation of lateral displacement of PVD-improved deposit

  • Chai, Jin-Chun;Xu, Fang
    • Geomechanics and Engineering
    • /
    • v.9 no.5
    • /
    • pp.585-599
    • /
    • 2015
  • Laboratory model tests were conducted to investigate the effect of surcharge loading rate on the magnitude of lateral displacement of prefabricated vertical drains (PVDs) improved deposit. The test results indicate that under the condition that the system had sufficient factor of safety (FS) ($FS{\geq}1.2$), for the similar model ground under the same total applied surcharge load, the lateral displacement increases with the increase of loading rate. The test results have been used to check the validity of a previously proposed method for predicting the maximum lateral displacement, and it shows that the data points are around the middle line of the predicted range, which supports the usefulness of the proposed method. The basic idea of the prediction method is an empirical relationship between the normalized lateral displacement (NLD) and a ration of load to the undrained shear strength of the deposit (RLS). The model test results offer some modifications of the NLD-RLS relationship: (1) instead of a bilinear relationship, NLD-RLS relationship may be entirely nonlinear; (2) the upper bound value of RLS for the proposed method can be used may be limited to 2.1 instead of the originally proposed value of 3.0.