• Title/Summary/Keyword: Shear Failure

Search Result 2,395, Processing Time 0.028 seconds

Cracks evolution and multifractal of acoustic emission energy during coal loading

  • Kong, Xiangguo;Wang, Enyuan;He, Xueqiu;Liu, Xiaofei;Li, Dexing;Liu, Quanlin
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.107-113
    • /
    • 2018
  • Coal samples with different joints morphology were subjected to uniaxial compression experiments, cracks evolution was recorded by Nikon D5300 and acoustic emission (AE) energy signals were collected by AEwin Test for Express-8.0. During loading process, coal samples deformed elastically with no obvious cracks changes, then they expanded gradually along the trace of the original cracks, accompanied by the formation of secondary cracks, and eventually produced a large-scale fracture. It was more interesting that the failure mode of samples were all shear shape, whatever the original cracks morphology was. With cracks and damage evolution, AE energy radiated regularly. At the early loading stage, micro damage and small scale fracture events only induced a few AE events with less energy, while large scale fracture leaded to a number of AE events with more energy at the later stage. Based on the multifractal theory, the multifractal spectrum could explain AE energy signals frequency responses and the causes of AE events with load. Multifractal spectrum width (${\Delta}{\alpha}$), could reflect the differences between the large and small AE energy signals. And another parameter (${\Delta}f$) could reflect the relationship between the frequency of the least and greatest signals in the AE energy time series. This research is helpful for us to understand cracks evolution and AE energy signals causes.

Assessment on Water Movement in Paddy-Upland Rotation Soil Scheduled for Ginseng Cultivation (답전윤환 인삼재배 예정지 토양의 물 이동특성 평가)

  • Hur, Seung-Oh;Lee, Yun-Jeong;Yeon, Byung-Ryul;Jeon, Sang-Ho;Ha, Sang-Geon;Kim, Jeong-Gyu
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.3
    • /
    • pp.204-209
    • /
    • 2009
  • This study was conducted to assess water movement in paddy-upland rotation soil scheduled for ginseng cultivation through the measurement of infiltration and permeability of soil water. Soil sample was divided with four soil layers. The first soil layer (to 30cm from top soil) was loamy sand, the second and the third soil layers (30$\sim$70 ㎝) were sand, and the fourth (< 120 ㎝) was sandy loam. The soil below 130 ㎝ of fourth soil layer was submerged under water. The shear strength, which represents the resisting power of soil against external force, was 3.1 kPa in the first soil layer. This corresponded to 1/8 of those of another soil layer and this value could result in soil erosion by small amount of rainfall. The rates of infiltration and permeability depending on soil layers were 39.86 cm $hr^{-1}$ in top soil, 2.34 cm $hr^{-1}$ in 30$\sim$70 ㎝ soil layer, 5.23 cm $hr^{-1}$ and 0.18 cm $hr^{-1}$ in 70$\sim$120 ㎝ soil layer, with drain tile, and without drain tile, respectively. We consider that ground water pooled in paddy soil and artificial formation of soil layer could interrupt water canal within soil and affect negatively on water movement. Therefore, we suggest that to drain at 5 m intervals be preferable when it makes soil dressing or soil accumulation to cultivate ginseng in paddy-upland rotation soil to reduce failure risk of ginseng cultivation.

Characterization of Partial Interfacial Fracture on Resistance Spot-Welded TRIP Steels for Automotive Applications (자동차 차체용 TRIP강판의 저항 점용접부 Partial Interfacial Fracture 특성에 관한 연구)

  • Choi, Chul Young;Kim, In-Bae;Kim, Yangdo;Park, Yeong-Do
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.2
    • /
    • pp.136-145
    • /
    • 2012
  • Resistance spot welding of TRIP780 steels was investigated to enhance understanding of weld fracture mode after tensile shear testing (TST) and L-shape tensile testing (LTT). The main failure mode for spot welds of TRIP780 steels was partial interfacial fracture (PIF). Although PIF does not satisfy the minimum button diameter (4${\surd}$t) for acceptable welds, it shows enough load carrying capacity of resistance spot welds for advanced high strength steels. In the analysis of displacement controlled L-shape tensile test results, cracks initiated at the notch of the faying surface and propagated through the interface of weldments, and finally, cracks change path into the sheet thickness direction. Use of the ductility ratio and CE analysis suggested that the occurrence of PIF is closely related to high hardness and brittle welds, which are caused by fast cooling rates and high chemical compositions of TRIP steels. Analysis of the hold time and weld time in a welding schedule demonstrated that careful control of the cooling rate and the size of a weld nugget and the HAZ zone can reduce the occurrence of PIF, which leads to sound welds with button fractures (BFs).

Experimental study on seismic behavior of reinforced concrete column retrofitted with prestressed steel strips

  • Zhang, Bo;Yang, Yong;Wei, Yuan-feng;Liu, Ru-yue;Ding, Chu;Zhang, Ke-qiang
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1139-1155
    • /
    • 2015
  • In this study, a new retrofitting method for improving the seismic performance of reinforced concrete column was presented, in which prestressed steel strips were utilized as retrofitting stuff to confine the reinforced concrete column transversely. In order to figure out the seismic performance of concrete column specimen retrofitted by such prestressed steel strips methods, a series of quasi-static tests of five retrofitted specimens and two unconfined column specimen which acted as control specimens were conducted. Based on the test results, the seismic performance including the failure modes, hysteresis performance, ductility performance, energy dissipation and stiffness degradation of all these specimens were fully investigated and analyzed. And furthermore the influences of some key parameters such as the axial force ratios, shear span ratios and steel strips spacing on seismic performance of those retrofitted reinforced concrete column specimens were also studied. It was shown that the prestressed steel strips provided large transverse confining effect on reinforced concrete column specimens, which resulted in improving the shearing bearing capacity, ductility performance, deformation capacity and energy dissipation performance of retrofitted specimens effectively. In comparison to the specimen which was retrofitted by the carbon fiber reinforced plastics (CFRP) strips method, the seismic performance of the specimens retrofitted by the prestressed steel strips was a bit better, and with much less cost both in material and labor. From this research results, it can be concluded that this new retrofitting method is really useful and has significant advantages both in saving money and time over some other retrofitting methods.

Finite element based dynamic analysis of multilayer fibre composite sandwich plates with interlayer delaminations

  • Jayatilake, Indunil N.;Karunasena, Warna;Lokuge, Weena
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.1
    • /
    • pp.15-28
    • /
    • 2016
  • Although the aircraft industry was the first to use fibre composites, now they are increasingly used in a range of structural applications such as flooring, decking, platforms and roofs. Interlayer delamination is a major failure mode which threatens the reliability of composite structures. Delamination can grow in size under increasing loads with time and hence leads to severe loss of structural integrity and stiffness reduction. Delamination reduces the natural frequency and as a consequence may result in resonance. Hence, the study of the effects of delamination on the free vibration behaviour of multilayer composite structures is imperative. The focus of this paper is to develop a 3D FE model and investigate the free vibration behaviour of fibre composite multilayer sandwich panels with interlayer delaminations. A series of parametric studies are conducted to assess the influence of various parameters of concern, using a commercially available finite element package. Additionally, selected points in the delaminated region are connected appropriately to simulate bolting as a remedial measure to fasten the delamination region in the aim of reducing the effects of delamination. First order shear deformation theory based plate elements have been used to model each sandwich layer. The findings suggest that the delamination size and the end fixity of the plate are the most important factors responsible for stiffness reduction due to delamination damage in composite laminates. It is also revealed that bolting the delaminated region can significantly reduce the natural frequency variation due to delamination thereby improving the dynamic performance.

Stress concentrations around a circular hole in an infinite plate of arbitrary thickness

  • Dai, Longchao;Wang, Xinwei;Liu, Feng
    • Structural Engineering and Mechanics
    • /
    • v.34 no.2
    • /
    • pp.143-157
    • /
    • 2010
  • This paper presents theoretical solutions for the three-dimensional (3D) stress field in an infinite isotropic elastic plate containing a through-the-thickness circular hole subjected to far-field in-plane loads by using Kane and Mindlin's assumption. The dangerous position, where the premature fracture or failure of the plate will take place, the expressions of the tangential stress at the surface of the hole and the out-of-plane stress constraint factor are found in a concise, explicit form. Based on the present theoretical solutions, a comprehensive analysis is performed on the deviated degree of the in-plane stresses from the related plane stress solutions, stress concentration and out-of-plane constraint, and the emphasis has been placed on the effects of the plate thickness, Poisson's ratio and the far-field in-plane loads on the stress field. The analytical solution shows that the effects of the plate thickness and Poisson's ratio on the deviation of the 3D in-plane stress components is obvious and could not be ignored, although their effects on distributions of the in-plane stress components are slight, and that the effect of the far-field in-plane loads is just on the contrary of that of the above two. When only the shear stress is loaded at far field, the stress concentration factor reach its peak value about 8.9% higher than that of the plane stress solutions, and the out-of-plane stress constraint factor can reach 1 at the surface of the hole and is the biggest among all cases considered.

Adhesion Properties of Moisture-Curable Polyurethane Hotmelt (습기경화형 폴리우레탄 핫멜트의 접착물성)

  • Kim, Jae-Beum;Chung, Kyung-Ho;Chun, Young-Sik;Jung, Jin-Soo;Chang, Young-Wook
    • Elastomers and Composites
    • /
    • v.33 no.4
    • /
    • pp.267-273
    • /
    • 1998
  • Isocyante terminated urethane prepolymers were synthesized by the reaction of 4,4'-dimethyl phenyldiisocyanate(MDI) and ester type polyols such as ethylene glycol/ butanediol adipate(EBA), neopentylglycol/butanediol adipate (NBA) and hexanediol adipate (HA) . All of the NCO-terminated urethane prepolymers are solid at room temperature, but they become mobile enough to be disposed onto a substrate upon heating about $80^{\circ}C$. Subsequently, they are solidified and cured through the reaction with moisture. Tensile behavior of the ore-thane hotmelt exhibits characteristic features depending on the type of polyol. The adhesive strength determined by single lap shear joint is higher in order of HA, NBA and EBA based ore thane hotmelt, which can be correlated with the magnitude of breaking energy of the cured films. The failure mode are cohesive for all cases and the adhesive strength increases as the test is performed faster. This indicates that the strength of the adhesive joint is primarily dependent upon the bulk properties of the adhesives.

  • PDF

A displacement solution for circular openings in an elastic-brittle-plastic rock

  • Huang, Houxu;Li, Jie;Rong, Xiaoli;Hao, Yiqing;Dong, Xin
    • Geomechanics and Engineering
    • /
    • v.13 no.3
    • /
    • pp.489-504
    • /
    • 2017
  • The localized shear and the slip lines are easily observed in elastic-brittle-plastic rock. After yielding, the strength of the brittle rock suddenly drops from the peak value to the residual value, and there are slip lines which divide the macro rock into numbers of elements. There are slippages of elements along the slip lines and the displacement field in the plastic region is discontinuous. With some restraints, the discontinuities can be described by the combination of two smooth functions, one is for the meaning of averaging the original function, and the other is for characterizing the breaks of the original function. The slip lines around the circular opening in the plastic region of an isotropic H-B rock which subjected to a hydrostatic in situ stress can be described by the logarithmic spirals. After failure, the deformation mechanism of the plastic region is mainly attributed to the slippage, and a slippage parameter is introduced. A new analytical solution is presented for the plane strain analysis of displacements around circular openings. The displacements obtained by using the new solution are found to be well coincide with the exact solutions from the published sources.

Evaluation of Seismic Response of Masonry Walls Strengthened with Steel-bar Truss Systems by Non-linear Finite Element Analysis (비선형 유한요소 해석에 의한 강봉 트러스 시스템으로 보강된 조적벽체의 내진거동 평가)

  • Hwang, Seung-Hyeon;Yang, Keun-Hyeok;Kim, Sang-Hee;Lim, Jin-Sun;Im, Chae-Rim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.20-27
    • /
    • 2021
  • The present study presents a nonlinear finite element analysis (FEA) approach using the general program of Abaqus to evaluate the seismic response of unreinforced masonry walls strengthened with the steel bar truss system developed in the previous investigation. For finite element models of masonry walls, the concrete damaged plasticity (CDP) and meso-scale methods were considered on the basis of the stress-strain relationships under compression and tension and shear friction-slip relationship of masonry prisms proposed by Yang et al. in order to formulate the interface characteristics between brick elements and mortars. The predictions obtained from the FEA approach were compared with test results under different design parameters; as a result, a good agreement could be observed with respect to the crack propagation, failure mode, rocking strength, peak strength, and lateral load-displacement relationship of masonry walls. Thus, it can be stated that the proposed FEA approach shows a good potential for designing the seismic strengthening of masonry walls.

Computational optimized finite element modelling of mechanical interaction of concrete with fiber reinforced polymer

  • Arani, Khosro Shahpoori;Zandi, Yousef;Pham, Binh Thai;Mu'azu, M.A.;Katebi, Javad;Mohammadhassani, Mohammad;Khalafi, Seyedamirhesam;Mohamad, Edy Tonnizam;Wakil, Karzan;Khorami, Majid
    • Computers and Concrete
    • /
    • v.23 no.1
    • /
    • pp.61-68
    • /
    • 2019
  • This paper presents a computational rational model to predict the ultimate and optimized load capacity of reinforced concrete (RC) beams strengthened by a combination of longitudinal and transverse fiber reinforced polymer (FRP) composite plates/sheets (flexure and shear strengthening system). Several experimental and analytical studies on the confinement effect and failure mechanisms of fiber reinforced polymer (FRP) wrapped columns have been conducted over recent years. Although typical axial members are large-scale square/rectangular reinforced concrete (RC) columns in practice, the majority of such studies have concentrated on the behavior of small-scale circular concrete specimens. A high performance concrete, known as polymer concrete, made up of natural aggregates and an orthophthalic polyester binder, reinforced with non-metallic bars (glass reinforced polymer) has been studied. The material is described at micro and macro level, presenting the key physical and mechanical properties using different experimental techniques. Furthermore, a full description of non-metallic bars is presented to evaluate its structural expectancies, embedded in the polymer concrete matrix. In this paper, the mechanism of mechanical interaction of smooth and lugged FRP rods with concrete is presented. A general modeling and application of various elements are demonstrated. The contact parameters are defined and the procedures of calculation and evaluation of contact parameters are introduced. The method of calibration of the calculated parameters is presented. Finally, the numerical results are obtained for different bond parameters which show a good agreement with experimental results reported in literature.