• Title/Summary/Keyword: Shear Cutting

Search Result 193, Processing Time 0.026 seconds

Development of new predictive analysis in the orthogonal metal cutting process by utilization of Oxley's machining theory

  • Abdelkader, Karas;Mohamed, Bouzit;Mustapha, Belarbi;Redha, Mazouzi
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1467-1481
    • /
    • 2015
  • This paper presents a contribution to improving an analytical thermo-mechanical modeling of Oxley's machining theory of orthogonal metals cutting, which objective is the prediction of the cutting forces, the average stresses, temperatures and the geometric quantities in primary and secondary shear zones. These parameters will then be injected into the developed model of Karas et al. (2013) to predict temperature distributions at the tool-chip-workpiece interface. The amendment to Oxley's modified model is the reduction of the estimation of time-related variables cutting process such as cutting forces, temperatures in primary and secondary shear zones and geometric variables by the introduction the constitutive equation of Johnson-Cook model. The model-modified validation is performed by comparing some experimental results with the predictions for machining of 0.38% carbon steel.

An Analysis of Cutting Force in Micromachining (미소절삭에서의 절삭력 해석)

  • Kim, Dong Sik;Kahng, C.H.;Kwak, Yoon Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.12
    • /
    • pp.72-80
    • /
    • 1995
  • Ultraprecision machining technology has been playing a rapidly increasing and important role in manufacturing. However, the physics of the micromachining process at very small depth of cut, which is typically 1 .mu. m or less is not well understool. Shear along the shear plane and friction at the rake face dominate in conventional machining range. But sliding along the flank face of the tool due to the elastic recovery of the workpiece material and the effects of plowing due to the large effective negative rake angle resultant from the tool edge radius may become important in micromachining range. This paper suggests an orthogonal cutting model considering the cutting edge radius and then quantifies the effect of plowing due to the large effective negative rake angle.

  • PDF

Characteristics Studies of Waste Tire Rubber Powders using the Different Grinding Methods (분쇄 방식에 따른 폐타이어 고무분말의 특성 연구)

  • Park, Jong-Moon;An, Ju-Young;Bang, Daesuk;Kim, Bong-Seok;Oh, Myung-Hoon
    • Resources Recycling
    • /
    • v.23 no.3
    • /
    • pp.44-50
    • /
    • 2014
  • In this study, a method of shear crushing and a two-stage disk mill were introduced to grind the waste tire powder. Rubber chips with various size were obtained during the crushing or grinding step. The two-stage disk mill was composed of two drum-type blades rotating at various speed and in opposite directions. Therefore, more roughly surfaced particles of micronized waste tire powder were obtained using shear crushing rather than using conventional cutting crushing. In this study, the shape of shear-crushed waste tire particles was compared with conventional cutting crushing particles by scanning electron microscope. In addition, the particle size analyzer was employed to determine the appropriate particle size of waste ground tire powders obtained in this study.

Effect of Polar Organic Substance on Cutting Mechanism (極性有機物質이 切削機構에 미치는 影響)

  • 서남섭;양균의
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.131-137
    • /
    • 1986
  • Cutting oil cools the chip and a tool as well as lubricates the chip-tool interface, the flank and machined surface. Rehbinder effect has been known as a phenomenon, the reduction of mechanical strength, when the metal is exposed to a polar organic environment or the surface of metal is coated with some polar organic substances. About the cause of Rehbinder effect there have been many different ideas by Rehbinder, Shaw, Barlow, Sakida and etc. In this report, the efect of polar organic substance( $C_{6}$ $H_{5}$C $H_{3}$+ $C_{6}$ $H_{4}$(C $H_{3}$)$_{2}$+ $C_{4}$ $H_{9}$OH+ $C_{6}$ $H_{12}$ $O_{2}$) (magic ink) upon the mechanism of chip formation on the orthogonal cutting of copper and mechanical properties of the work material are experimentally discussed with various rake angles. As expected no lubrication action could be noticed, but the shear angle increased and the cutting force and shear strain on the shear plane decreased, therefore the work material must be embrittled under polar organic substance.substance.

A Study on Transient Chip Formation in Cutting with Self-Propelled Rotary Tools-Experimental Verification (자기추진 로타리 공구를 사용한 절삭에서 천이칩 형성에 관한 연구 - 실험에 의한 증명)

  • 최기흥;최기상;김정수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.1910-1920
    • /
    • 1993
  • An experimental study to investigate the unconventional chip formation called triangulation of chip in cutting with a SPRT (self-propelled rotary tool) is performed using acoustic emission (AE) signal analysis. In doing that, a quantitative model of the AE RMS signal in triangulation with a SPRT is first developed. The predicted results from this model show good correlation between the AE RMS signal and the general characteristics of triangular chip formation. Then, effects of various process parameters such as cutting conditions (cutting speed, depth of cut, oblique angle and normal rake angle) and the work material properties on the chip formation in cutting with a SPRT are explored. Special attention is paid to the work material properties which are found to have significant effects on triangulation.

Effect of Cutting Fluid on the Metal-Cutting Mechanism (절삭유제가 금속절삭기구에 미치는 영향에 관한 연구)

  • Seo, Nam-Seob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.2 no.2
    • /
    • pp.69-75
    • /
    • 1985
  • The object of this study is to discuss the effect of cutting fluid on the mechanism of chip formation in orthogonal cutting. Rehbinder effect has been known as a phenomenon, the reduction of mechanical strength, when the metal is exposed in a polar organic environment or the surface of metal is coated with some polar organic substances. About the cause of Rehbinder effect there have been many different ideas by Rehbinder, Merchant, Shaw, Sakakida and etc. In this report, the effects of surface active medium (magic ink) upon the mechanism of chip formation on the orthogonal cutting of copper and the mechanical properties of the work material are experimentally discussed with constant rake angle. Under the condition of polar organic environment the experimental results are as follows; 1) The chip thickness becomes thinner and slip line pitch on the free surface of chip becomes smaller than that of dried cutting area. 2) The order of alternation of cutting ratio was changed. 3) The friction angle on the tool face is not affected by the depth of cut. 4) The cutting force and shear strain on the shear plane decrease remarkably, therefore the work material must be embrittled under polar organic environment.

  • PDF

A study on the cutting punch shape about roll forming process (롤 포밍 공정에서 컷팅 펀치 형상에 관한 연구)

  • Cheong, Mun-Su
    • Design & Manufacturing
    • /
    • v.10 no.3
    • /
    • pp.34-38
    • /
    • 2016
  • Roll forming is a continuous production process that is mass-produced. The roll forming process is produced in various forms. The special feature of roll forming is a continuous production. Therefore, the process of cutting the material is essential. The troubles in a shearing process affects the low productivity. Accordingly, it is important to reduce the factors that inhibit the material flow. And it is difficult to apply the common shear angle. Because it is not a simple forms, such as a progressive die. This study shows how to select the angle of a shear punch and the shape of a cutting punch in the product with a specific shape. Conclusively through three different model, it is advantageous to apply the different shear angle and clearance along the forms.

A Study on the Machinabilty of Tianium (티타늄의 절삭성에 관한 연구)

  • Hong, Hwan-Pyo;Oh, Seok-Hyung;Seo, Nam-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.1
    • /
    • pp.45-51
    • /
    • 1989
  • In metal cutting various types of chips are produced in consequence of cutting conditions. According to the type of chips the cutting mechanism is to be changed. Most of the cutting theory is based on the continuous chip because of its convenient analysis, but the occurrence of the saw-toothed chip depends upon the workpiece and/or the cutting conditions, one of which is titanium alloy used widely. Nowadays titanium alloys are used widely with the rapid development of aerospace structural engineering application, whereas the theory of cutting mechanism has not been established yet, and the formatting process has not been understood satisfactorily, either. Unfortunately several misconceptions, conflicting statements and statements needing further clarifi- cation are also found. In this paper an attempt is made to clarify the formation process of saw-toothed chips which are to be produced during the orthogonal cutting process of titanium alloys. They were machined at low speed to avoid the rapid tool wear. We observed the SEM-photographs of chips taken at the quick-st- opping device. It is hoped that a rational model of the mechanics of cyclic chip formation can be developed. The results obtained are as follows. 1. When a saw- toothed chip is formed, the shear band begins at the primary shear zone and trans- fers to the free surface, so that a segment is produced and it is completed by upsetting between the formatting segment and the formatted segment. 2. As the rake angle or the clearance angle increases in the machining of the titanium alloy, the chip approaches to that of the continous type. 3. When the rake angle and the clearance angle are increased the shear energy and the unit friction energy decrease, which shows the same aspect as that of the continuous chip.

  • PDF

The Effest of Matrix of Nodular Graphite Cast Iron on Machinability in Lathe Turning - Cutting Force, Cutting Ratio and Shear Angle- (球狀黑鉛鑄鐵의 其他組織이 切削性에 미치는 영향 I)

  • 성환태;안상욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.807-813
    • /
    • 1986
  • The orthogonal cutting method of the nodular graphite cast iron in the lathe turning, whose matrix were formulated under two kinds of annealing conditions, has been experimentally studied and the results investigated. The various characteristics of machinabilities of the nodular cast iron, depending upon its matrix, have been obtained from the results as follows. (1) As depth of cut increases, the cutting ratio and the shear angles tend to slightly increase, and as the containing quantity of ferrite matrix increases, they slightly decrease. (2) As depth of cut increases, the cutting force increases in an approximate straight line, and as the containing quantity of ferrite matrix increases, they decreases and the decreasing rate is about 20-30%. (3) As the containing quantity of ferrite matrix increases, the friction force acting on the tool face decreases and the decreasing rate is about 34-40% in case of the lower depth of cut, but in case of the higher depth of cut the decreasing rate is very small. (4) Both shearing force and vertical force show a lineal increases, and according as ferrite matrix increases there is a decrease by 25% in shearing force and a 12-25% decrease in vertical force. (5) Shearing speed and chip flow speed keep almost a constant value irrespective of matrix.

Estimation of Machinability of Lead Brass Based on In-Situ Observation in Scanning Electron Microscope (전자현미경 In-Situ 관찰방법을 이용한 황동의 절삭성평가)

  • Jung, Seung-Boo;Lim, Ok-Dong;An, Seong-Uk
    • Applied Microscopy
    • /
    • v.24 no.3
    • /
    • pp.87-93
    • /
    • 1994
  • In order to elucidate the machinability of lead brass, orthogonal machining experiment was conducted in SEM(Scanning Electron Microscope) equipped with a micro-machining device at a cutting speed of $7{\mu}m/s$ for brass containing 0.2 to 3wt% Pb. The microfactors (i.e., shear angle, contact length between chip and tool) were determined by in-situ observations. Machinability of brass containing lead is discussed in terms of the microfactors and the cutting resistant force tested by lathe cutting. The dynamic behavior of the chip formation of lead brass during the machining process was examined: The chips of lead brass form as a shear angle type. The shear angle increases with the content of lead in (6:4) brass. The pronounced effect of lead on the contact length between chip and tool was observed above 1% Pb. The cutting resistant force tested by lathe decreases remarkably with the lead content in brass. The observed microfactors are in close relation to the tested resistant force in macromachining.

  • PDF