• Title/Summary/Keyword: Shared Backup Bandwidth

Search Result 3, Processing Time 0.019 seconds

Multi-Path Virtual Network Resource Allocation with Shared Backup Bandwidth (공유 백업 대역폭을 갖는 다중 경로 지원 가상 네트워크 자원 할당 방안)

  • Kim, Hak Suh;Lee, Sang-Ho
    • Journal of Convergence Society for SMB
    • /
    • v.6 no.4
    • /
    • pp.17-23
    • /
    • 2016
  • With the advance of ICT, the Internet has been creating new services in various fields. However, due to the architectural problem of the Internet, it may inhibit the development of network architectures and various services. Network virtualization is being investigated as an alternative to overcome the architectural problem of the Internet and a virtual network resource allocation algorithm is a very important issue. In this paper, we propose a multiple path resource allocation algorithm with shared backup bandwidth in order to overcome single link failure. It will be improved survivability of the virtual networks. Through our experiments, we confirmed that the multi-path creation time of the proposed algorithm has about 50% performance improvement than previous works.

Protection of a Multicast Connection Request in an Elastic Optical Network Using Shared Protection

  • BODJRE, Aka Hugues Felix;ADEPO, Joel;COULIBALY, Adama;BABRI, Michel
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.119-124
    • /
    • 2021
  • Elastic Optical Networks (EONs) allow to solve the high demand for bandwidth due to the increase in the number of internet users and the explosion of multicast applications. To support multicast applications, network operator computes a tree-shaped path, which is a set of optical channels. Generally, the demand for bandwidth on an optical channel is enormous so that, if there is a single fiber failure, it could cause a serious interruption in data transmission and a huge loss of data. To avoid serious interruption in data transmission, the tree-shaped path of a multicast connection may be protected. Several works have been proposed methods to do this. But these works may cause the duplication of some resources after recovery due to a link failure. Therefore, this duplication can lead to inefficient use of network resources. Our work consists to propose a method of protection that eliminates the link that causes duplication so that, the final backup path structure after link failure is a tree. Evaluations and analyses have shown that our method uses less backup resources than methods for protection of a multicast connection.

Providing survivability for virtual networks against substrate network failure

  • Wang, Ying;Chen, Qingyun;Li, Wenjing;Qiu, Xuesong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4023-4043
    • /
    • 2016
  • Network virtualization has been regarded as a core attribute of the Future Internet. In a network virtualization environment (NVE), multiple heterogeneous virtual networks can coexist on a shared substrate network. Thus, a substrate network failure may affect multiple virtual networks. In this case, it is increasingly critical to provide survivability for the virtual networks against the substrate network failures. Previous research focused on mechanisms that ensure the resilience of the virtual network. However, the resource efficiency is still important to make the mapping scheme practical. In this paper, we study the survivable virtual network embedding mechanisms against substrate link and node failure from the perspective of improving the resource efficiency. For substrate link survivability, we propose a load-balancing and re-configuration strategy to improve the acceptance ratio and bandwidth utilization ratio. For substrate node survivability, we develop a minimum cost heuristic based on a divided network model and a backup resource cost model, which can both satisfy the location constraints of virtual node and increase the sharing degree of the backup resources. Simulations are conducted to evaluate the performance of the solutions. The proposed load balancing and re-configuration strategy for substrate link survivability outperforms other approaches in terms of acceptance ratio and bandwidth utilization ratio. And the proposed minimum cost heuristic for substrate node survivability gets a good performance in term of acceptance ratio.