• Title/Summary/Keyword: Shape-based Interpolation

Search Result 113, Processing Time 0.03 seconds

Control Method for the Tool Path in Aspherical Surface Grinding and Polishing

  • Kim, Hyung-Tae;Yang, Hae-Jeong;Kim, Sung-Chul
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.4
    • /
    • pp.51-56
    • /
    • 2006
  • This paper proposes a control algorithm, which is verified experimentally, for aspherical surface grinding and polishing. The algorithm provides simultaneous control of the position and interpolation of an aspheric curve. The nonlinear formula for the tool position was derived from the aspheric equation and the shape of the tool. The function was partitioned at specific intervals and the control parameters were calculated at each control section. The position, acceleration, and velocity at each interval were updated during the process. A position error feedback was introduced using a rotary encoder. The feedback algorithm corrected the position error by increasing or decreasing the feed speed. In the experimental verification, a two-axis machine was controlled to track an aspherical surface using the proposed algorithm. The effects of the control and process parameters were monitored. The results demonstrated that the maximum tracking error with tuned parameters was at the submicron level for concave and convex surfaces.

A Method and Analysis of Gray Level Shape-Based Interpolation in Medical CT Image (복부CT영상에서의 그레이 수준 형태 기반 보간법)

  • Seong, Won;Park, Jong-Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.05a
    • /
    • pp.631-634
    • /
    • 2003
  • 오늘날 CT나 MR등을 통한 의학 영상 기술과 컴퓨터 성능의 향상으로 인체 내부 장기의 영상을 비교적 용이하게 얻을 수 있으며 얻어진 영상 정보는 컴퓨터로 수치화 되므로 데이터의 조작 및 가공이 용이하다. 그러나, 이렇게 얻어진 의학 영상들은 보통 2 차원적 슬라이스 image 형태로 얻어진다. 일반적으로 슬라이스 사이의 간격은 조사량 등 여러 문제 때문에, 항상 동일한 간격을 유지하고 있지 않은 경우가 많으며 슬라이스 사이 간격이 슬라이스 내의 픽셀 간격보다 큰 경우가 대부분이다. 이러한 image로부터 3 차원적 디스플레이나, 조작, 분석을 하기 위해서는 같은 간격의 image를 얻어야 한다. 이러한 이유로 인하여 보간(Interpolation) 기법이 의학 영상 분야에서 많이 사용된다. 본 논문은 형태-기반 보간 방법을 gray-scale image 에 적용이 가능하도록 확장한 그레이 수준 형태 기반 보간 알고리즘을 구현하였다. 그리하여, 본 논문이 제안한 알고리즘을 슬라이스 간격이 큰 2차원 복부 CT 영상에 적용시켜 다른 보간 법들보다 향상된 결과를 확인할 수 있었다.

  • PDF

A Study on the Stochastic Finite Element Method for Dynamic Problem of Nonlinear Continuum

  • Wang, Qing;Bae, Dong-Myung
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.2
    • /
    • pp.1-15
    • /
    • 2008
  • The main idea of this paper introduce stochastic structural parameters and random dynamic excitation directly into the dynamic functional variational formulations, and developed the nonlinear dynamic analysis of a stochastic variational principle and the corresponding stochastic finite element method via the weighted residual method and the small parameter perturbation technique. An interpolation method was adopted, which is based on representing the random field in terms of an interpolation rule involving a set of deterministic shape functions. Direct integration Wilson-${\theta}$ Method was adopted to solve finite element equations. Numerical examples are compared with Monte-Carlo simulation method to show that the approaches proposed herein are accurate and effective for the nonlinear dynamic analysis of structures with random parameters.

A radial point interpolation method for 1D contaminant transport modelling through landfill liners

  • Praveen Kumar, R.;Dodagoudar, G.R.
    • Geomechanics and Engineering
    • /
    • v.2 no.2
    • /
    • pp.141-156
    • /
    • 2010
  • In the framework of meshfree methods, a new methodology is developed based on radial point interpolation method (RPIM). This methodology is applied to a one-dimensional contaminant transport modelling in the saturated porous media. The one-dimensional form of advection-dispersion equation involving reactive contaminant is considered in the analysis. The Galerkin weak form of the governing equation is formulated using 1D meshfree shape functions constructed using thin plate spline radial basis functions. MATLAB code is developed to obtain the numerical solution. Numerical examples representing various phenomena, which occur during migration of contaminants, are presented to illustrate the applicability of the proposed method and the results are compared with those obtained from the analytical and finite element solutions. The proposed RPIM has generated results with no oscillations and they are insensitive to Peclet constraints. In order to test the practical applicability and performance of the RPIM, three case studies of contaminant transport through the landfill liners are presented. A good agreement is obtained between the results of the RPIM and the field investigation data.

A simple method to compute a periodic solution of the Poisson equation with no boundary conditions

  • Moon Byung Doo;Lee Jang Soo;Lee Dong Young;Kwon Kee-Choon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.286-290
    • /
    • 2005
  • We consider the poisson equation where the functions involved are periodic including the solution function. Let $R=[0,1]{\times}[0,l]{\times}[0,1]$ be the region of interest and let $\phi$(x,y,z) be an arbitrary periodic function defined in the region R such that $\phi$(x,y,z) satisfies $\phi$(x+1, y, z)=$\phi$(x, y+1, z)=$\phi$(x, y, z+1)=$\phi$(x,y,z) for all x,y,z. We describe a very simple method for solving the equation ${\nabla}^2u(x, y, z)$ = $\phi$(x, y, z) based on the cubic spline interpolation of u(x, y, z); using the requirement that each interval [0,1] is a multiple of the period in the corresponding coordinates, the Laplacian operator applied to the cubic spline interpolation of u(x, y, z) can be replaced by a square matrix. The solution can then be computed simply by multiplying $\phi$(x, y, z) by the inverse of this matrix. A description on how the storage of nearly a Giga byte for $20{\times}20{\times}20$ nodes, equivalent to a $8000{\times}8000$ matrix is handled by using the fuzzy rule table method and a description on how the shape preserving property of the Laplacian operator will be affected by this approximation are included.

A Static Fluid-Structure Interaction Analysis System Based on the Navier-Stokes Equations for the Prediction of Aerodynamic Characteristics of Aircraft (항공기 공력특성 예측을 위한 Navier-Stokes 방정식 기반의 정적 유체-구조 연계 해석 시스템)

  • Jung, Sun-Ki;Anh Duong, Hoang;Lee, Young-Min;Lee, Jin-Hee;Myong, Rho-Shin;Cho, Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.6
    • /
    • pp.532-540
    • /
    • 2008
  • Recently there are growing interests in calculating aerodynamic characteristics of aircraft configurations with structural deformation using the FSI(Fluid-Structure Interaction) system in which CFD(Computational Fluid Dynamics) and CSD(Computational Structure Dynamics) modules are coupled. In this paper the FSI system comprised of CAD, CFD, CSD, VSI(Volume Spline Interpolation) and grid deformation modules was constructed in order to investigate aerodynamic characteristics of the deformed shape. In the process VSI and grid generation modules are developed to combine CSD and CFD routines and to regenerate the aerodynamic grids for the deformed shape, respectively. For the CFD and CSD analysis, commercial programs FLUENT and NASTRAN were used. As a test model, DLR-F4 wing configuration was chosen and its aerodynamic characteristics were calculated by applying the static FSI system. It was shown that lift and drag coefficients of the wing at mach number 0.75 are reduced to 20.26% and 18.5%, respectively, owing to the structural deformation.

Assessment of Gradient-based Digital Speckle Correlation Measurement Errors

  • Jian, Zhao;Dong, Zhao;Zhe, Zhang
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.372-380
    • /
    • 2012
  • The optical method Digital Speckle Correlation Measurement (DSCM) has been extensively applied due its capability to measure the entire displacement field over a body surface. A formula of displacement measurement errors by the gradient-based DSCM method was derived. The errors were found to explicitly relate to the image grayscale errors consisting of sub-pixel interpolation algorithm errors, image noise, and subset deformation mismatch at each point of the subset. A power-law dependence of the standard deviation of displacement measurement errors on the subset size was established when the subset deformation was rigid body translation and random image noise was dominant and it was confirmed by both the numerical and experimental results. In a gradient-based algorithm the basic assumption is rigid body translation of the interrogated subsets, however, this is in contradiction to the real circumstances where strains exist. Numerical and experimental results also indicated that, subset shape function mismatch was dominant when the order of the assumed subset shape function was lower than that of the actual subset deformation field and the power-law dependence clearly broke down. The power-law relationship further leads to a simple criterion for choosing a suitable subset size, image quality, sub-pixel algorithm, and subset shape function for DSCM.

simultaneous Control of Position and Cutting Force Based o Multi-input Multi-output Model in Ball End Milling Process (볼엔드밀 절삭공정에서 위치 및 절삭력 동시제어)

  • 이건복
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.121-126
    • /
    • 2000
  • This research proposes a new advanced control method and demonstrates its realization in part. By incorporating shape machining and cutting force control at a time, this integrated scheme makes it possible to machine a desired shape and avoid the trouble of programming feedrate and spindle speed before machining and also reduce the shape error. The main idea proposed to achieve those goals consists in giving commanded path and desired cutting force at the same time. which makes it possible for position and force controller to distribute the corresponding velocity of individual axes and main spindle by an appropriate interpolation. That indicates we can replace the built-in interpolator of commercial machine tools by the developed algorithm.

  • PDF

Interactive Control of Geometric Shape Morphing based on Minkowski Sum (민코프스키 덧셈 연산에 근거한 기하 도형의 모핑 제어 방법)

  • Lee, J.-H.;Lee, J. Y.;Kim, H.;Kim, H. S.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.4
    • /
    • pp.269-279
    • /
    • 2002
  • Geometric shape morphing is an interesting geometric operation that interpolates two geometric shapes to generate in-betweens. It is well known that Minkowski operations can be used to test and build collision-free motion paths and to modify shapes in digital image processing. In this paper, we present a new geometric modeling technique to control the morphing on geometric shapes based on Minkowski sum. The basic idea develops from the linear interpolation on two geometric shapes where the traditional algebraic sum is replaced by Minkowski sum. We extend this scheme into a Bezier-like control structure with multiple control shapes, which enables the interactive control over the intermediate shapes during the morphing sequence as in the traditional CAGD curve/surface editing. Moreover, we apply the theory of blossoming to our control structure, whereby our control structure becomes even more flexible and general. In this paper, we present mathematical models of control structure, their properties, and computational issues with examples.

Feature Based Techniques for a Driver's Distraction Detection using Supervised Learning Algorithms based on Fixed Monocular Video Camera

  • Ali, Syed Farooq;Hassan, Malik Tahir
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3820-3841
    • /
    • 2018
  • Most of the accidents occur due to drowsiness while driving, avoiding road signs and due to driver's distraction. Driver's distraction depends on various factors which include talking with passengers while driving, mood disorder, nervousness, anger, over-excitement, anxiety, loud music, illness, fatigue and different driver's head rotations due to change in yaw, pitch and roll angle. The contribution of this paper is two-fold. Firstly, a data set is generated for conducting different experiments on driver's distraction. Secondly, novel approaches are presented that use features based on facial points; especially the features computed using motion vectors and interpolation to detect a special type of driver's distraction, i.e., driver's head rotation due to change in yaw angle. These facial points are detected by Active Shape Model (ASM) and Boosted Regression with Markov Networks (BoRMaN). Various types of classifiers are trained and tested on different frames to decide about a driver's distraction. These approaches are also scale invariant. The results show that the approach that uses the novel ideas of motion vectors and interpolation outperforms other approaches in detection of driver's head rotation. We are able to achieve a percentage accuracy of 98.45 using Neural Network.