• Title/Summary/Keyword: Shape separation

Search Result 402, Processing Time 0.027 seconds

Optimal Design for the Low Drag Tail Shape of the MIRA Model (MIRA model 후미의 저저항 최적 설계)

  • Kim Wook;Hur Nahmkeon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.67-74
    • /
    • 1998
  • Reducing drag of vehicles are the main concern for the body shape designers in order to lower fuel consumption rate and to aid the driving stability. The drag of bluff bodies like transportation vehicles is mostly pressure drag due to the flow separation, which can minimized by controlling the location and size of the separation bubble. In the present study, the TURBO-3D code is incorporated with optimal algorithm based on analytical approximation method to obtain optimal afterbody shape of the MIRA Model corresponding to the lowest drag coefficient. For this purpose three mutually independent afterbody angles are chosen as design variables, while the drag coefficient is chosen as an objective function. It is demonstrated in the present study that an optimal body shape having lowest drag coefficient which is about $6\%$ lower than that of the original shape has been successfully obtained within number of iterations of the optimal design loop.

  • PDF

A Numerical Study on the Characteristics of Flow Field, Temperature and Concentration Distribution According to Changing the Shape of Separation Plate of Kitchen Hood System (주방용 후드시스템의 분리판 형상 변화에 따른 유동장, 온도 및 농도특성에 관한 수치적 연구)

  • Lee, Kwang-Sub;Lee, Chang-Hee;Lim, Kyoung-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.177-185
    • /
    • 2006
  • This study aims deriving analysis the flow characteristic of kitchen hood system with using 3-D numerical analysis method and improving the system to expel pollutes more efficiently. To understand the flow characteristics of four models, this study only focuses on velocity field, temperature field, and concentration field varying with followings whether separation plate is set or not and the shapes of separation plates. The quantity of air, speed of exhaust fan and temperature and concentration of heating source are concerned as constant values. The three models having different shapes have one exhaust port and the model which has the vent at the closest position to where pollutes are generated is discovered to be the most efficient model. Compare to the initial model (having no separation plate), it was $1.4-1.9\%$ more efficient at temperature distribution and $9.4-11.9\%$ more at $CO_2$ concentration distribution.

SEPARATION CONTROL MECHANISM USING SYNTHETIC JET ON AIRFOIL (익형에서의 synthetic jet을 이용한 박리제어 mechanism)

  • Kim, S.H.;Kim, W.;Hong, W.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.60-66
    • /
    • 2007
  • Separation control has been performed using synthetic jets on airfoil at high angle of attack. Computed results demonstrated that stall characteristics and control surface performance could be substantially improved by resizing separation vortices. It was observed that the actual flow control mechanism and flow structure is fundamentally different depending on the range of synthetic jet frequency. For low frequency range, small vortices due to synthetic jet penetrated to the large leading edge separation vortex, and as a result, the size of the leading edge vortex was remarkably reduced. For high frequency range, however, small vortex did not grow up enough to penetrate into the leading edge separation vortex. Instead, synthetic jet firmly attached the local flow and influenced the circulation of the virtual airfoil shape which is the combined shape of the main airfoil with the separation vortex. Theses results show the characteristic of unsteady flow of single synthetic jet. Beside, we researched on multi-array synthetic jet to obtain applicable synthetic jet velocity. Multi-location synthetic jet is proposed to eliminate small vortex on suction surface of airfoil. With the results, we concluded that the flow around airfoil is stable by high frequency synthetic jet with elimination of small vortex and confirmation of stable flow. Moreover, performance of multi-array/multi-location synthetic jet can be improved by changing phase angle of multi-location synthetic jet.

  • PDF

An Analysis for the Characteristics of Headward Erosion and Separation Zone due to Bed Discordance at Confluence (합류부 하상고 불일치에 의한 두부침식 및 분리구역 특성분석)

  • Choi, Heung Sik;Mo, Sun Jea;Lee, Sam Hee
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.11
    • /
    • pp.879-889
    • /
    • 2015
  • The pattern of headward erosion at tributary and the separation zone formation in a loosed bed at confluence according to the confluence angle, discharge ratio, and dredging depth ratio have been analyzed. The separation zone is defined the inside of zero velocity boundary at downstream of confluence. The limit of separation zone occurrence is presented with dredging depth ratio. The propagation length of knickpoint increases as the confluence angle, discharge ratio, and dredging depth ratio increase in general and its regression equation has been suggested. The length and width ratios of separation zone in a loosed bed increase as discharge ratio and confluence angle increase as well as in a fixed bed. The length ratio decreases and the width ratio increases as dredging depth ratio increases results in great increase of shape factor and backwater rise by the conveyance reduction at confluence. The regression equation of shape factor with confluence angle, discharge ratio, and dredging depth ratio has been suggested.

Effect of Shape Parameters of Tool on Improvement of Joining Strength in Clinching (클린칭 접합력 향상을 위한 금형 형상변수의 영향도 평가)

  • Kim, J.Y.;Lee, C.J.;Lee, S.K.;Ko, D.C.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.18 no.5
    • /
    • pp.392-400
    • /
    • 2009
  • Clinching is a method of joining sheet metals together. This process can be substituted for the resistance spot welding on the joining of aluminum alloys. However, the joining strength of the clinching is lower than that of welding and riveting. The objective of this paper is to evaluate the effect of shape parameters of tools on the joining strength of the clinching and to optimize clinching tools. Twelve parameters have been selected as shape parameters on the clinching tools such as punch and die. The design of experiments (DOE) method is employed to investigate the effect of the shape parameters of tools on the joining strength of the clinching. The neck thickness and undercut of the clinched sheet metal after the clinching, and the separation load at detaching are estimated from the result of FEA using DEFORM. Optimal combination of shape parameters to maximize the joining strength of clinching is determined on the basis of the result of DOE and FEA. In order to validate the result of DOE and FEA, the experiment of clinching is performed for the optimal combination of shape parameters. It is shown from the result of the experiment that optimization of shape parameters improves the joining strength of clinching.

Performance evaluation on the separation device activated by shape memory alloy actuator (형상기억합금을 이용한 소형 위성용 분리장치의 성능평가)

  • Choi, Junwoo;Lee, Dongkyu;Hwang, Kukha;Lee, Minhyung;Kim, Byungkyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.7
    • /
    • pp.635-640
    • /
    • 2015
  • In this paper, we report a non-explosive separation device for a small satellite which utilize a shape memory alloy actuator. Based on previous research, we try to increase the reliability of the proposed device by changing some components. It enables the proposed device to activate under high preload. Also, we confirm it generates low shock which is main advantage of non-explosive separation device. Finally, vibration test which mimics launching environment and thermal vacuum test which mimics space environment are carried out respectively. After each environment test, we confirm the proposed device is successfully activated. Conclusively, we develop a non-explosive separation device which can activate with low shock under high preload after shock and environment tests(vibration and thermal vacuum tests).

3-DIMENSIONAL FLOW FIELD ANALYSIS AND TIP SHAPE DESIGN IN A WIND TURBINE BLADE (풍력 발전기 블레이드에 걸친 3차원 유동장 해석 및 팁 형상 설계)

  • Jeong, Jae-Ho;Yoo, Cheol;Lee, Jung-Sang;Kim, Ki-Hyun;Choi, Jae-Woong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.243-248
    • /
    • 2011
  • The 3-dimensional flow field has been investigated by numerical analysis in a 2.5MW wind turbine blade. Complicated and separated flaw phenomena in the wind turbine blade were captured by the Reynolds-averaged Navier-Stokes(RANS) steady flaw simulation using general-purpose code, CFX and the mechanism of vortex structure behavior is elucidated. The vortical flow field in a wind turbine rotor is dominated by the tip vortex and hub separation vortex. The tip vortex starts to be formed near the blade tip leading edge. As the tip vortex develops in the tangential direction, interacting with boundary layer from the blade tip trailing edge. The hub separation vortex is generated near the blade hub leading edge and develops nearly in the span-wise direction. Furthermore, 3-dimensional blade tip shape has been designed for increasing shrift power and reducing thrust force on the wind turbine blade. It is expected that the behavior of the tip vortex and hub separation vortex plays a major role in aerodynamic and aeroacoustic characteristics.

  • PDF

An Analysis on the Characteristics of Separation Zone Due to a Bed Discordance at Confluence (합류부 하상고 불일치에 의한 분리구역 특성분석)

  • Choi, Heung Sik;Mo, Sun Jea
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.8
    • /
    • pp.625-634
    • /
    • 2015
  • The diverse patterns of separation zone according to the marked bed discordance by dredging at confluence in addition to the confluence angle of tributary and discharge ratio between tributary and main channels have been analyzed by CCHE2D model simulation. The separation zone is defined by inside of zero velocity boundary at down-stream of confluence. The separation zone dose not formed at the $30^{\circ}$ of confluence angle of tributary. The size of separation zone increases as the discharge ratio and confluence angle increase in general. The separation zone decreases as the dredging depth increases which shows the relative momentum reduction compared by the flow volume increasing by dredging at confluence. The contraction factor with the variation of confluence angle and discharge ratio has been investigated and confirmed the corresponding conveyance decreasing results in backwater effect. The regression equation of shape factor with confluence angle and discharge and dredging depth ratios has been suggested.

Optimization of Cutoff Shields in Projection Headlight Systems to Achieve High Intensity Gradient and Low Color Separation at the Cutoff Line

  • Joo, Byung-Yun;Ko, Jae-Hyeon
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.118-124
    • /
    • 2016
  • The shape and location of the cutoff shield in a projection-type headlight system were optimized by a ray-tracing technique. A shield based on a Petsval surface showed better cutoff characteristics than a flat or cylindrical shield, such as a sharp intensity gradient and less color separation at the cutoff line. Adjustment of the shield’s location between the reflector and the aspheric lens further improved its cutoff characteristics.

Optimization of Blade Sweep of NASA Rotor 37 (NASA Rotor 37 익형의 스윕각 최적화)

  • Jang Choon-Man;Li Ping;Kim Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.7 s.250
    • /
    • pp.622-629
    • /
    • 2006
  • The shape optimization of blade sweep in a transonic axial compressor rotor of NASA Rotor 37 has been performed using response surface method and the three-dimensional Wavier-Stokes analysis. Two shape variables of the rotor blade, which are used to define the rotor sweep, are introduced to increase the adiabatic efficiency of the compressor. Throughout the optimization, optimal shape having a backward sweep is obtained. Adiabatic efficiency, which is the objective function of the present optimization, is successfully increased. Separation line due to the interference between a shock and surface boundary layer on the blade suction surface is moved downstream for the optimized blade compared to the reference one. The increase in adiabatic efficiency for the optimized blade is caused by suppression of the separation due to a shock on the blade suction surface.