• Title/Summary/Keyword: Shape recovery

Search Result 342, Processing Time 0.038 seconds

Effect of Cu Content and Annealing Temperature on the Shape Memory Effect of NiTi-based Alloy (구리함량과 어닐링 온도가 NiTi 합금의 형상기억효과에 미치는 영향)

  • Hyeok-Jin Yang;Hyeong Ju Mun;Ye-Seul Cho;Jun-Hong Park;Hyun-Jun Youn;In-Chul Choi;Myung-Hoon Oh
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.2
    • /
    • pp.79-85
    • /
    • 2024
  • The effects of annealing heat treatment and the addition of Cu element on the shape memory effect of the NiTi-based alloy were investigated by analyzing differential scanning calorimeter results and characterizing recovery rate through 3D scanning after Vickers hardness test. Through 3D scanning of impressions after Vickers hardness test, the strain recovery rates for specimens without annealing treatment and annealed specimens at 400, 450, and 500℃ were measured as 45.96%, 46.76%, 52.37%, and 43.57%, respectively. This is because as the annealing temperature increases, both B19' and NiTi2 phases, which can impede martensitic transformation, are incorporated within the NiTi matrix. Particularly, additional phase transformation from R-phase to B19' observed in specimens annealed at 400 and 450℃ significantly contributes to the improvement in strain recovery rates. Additionally, the results regarding the Cu element content indicate that when the total content of Ni and Cu is below 49.6 at.%, the precipitation of fine B19' and NiTi2 phases within the matrix can greatly influence the transformation enthalpy and temperature range, resulting in relatively lower strain recovery rates in NiTi alloys with a small amount of Cu element produced in this study.

Optimal Shape of a Ramjet Intake by using a Response Surface Method (반응표면법을 이용한 램제트 엔진 흡입구 설계인자 최적화)

  • Oh, Seok-Jin;Sung, Hong-Gye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.10
    • /
    • pp.68-74
    • /
    • 2005
  • Optimal shape of a typical ramjet intake is examined numerically to maximize the total pressure recovery. A response surface method is introduced to approximately predict its performance with respect to the design parameters over the each design domain. The first deflection angle of ramp, the area of inlet throat, and the diffuser angle are chosen as a design parameter. ANOVA is used to verify the trustability of the achieved response surface. The total pressure recovery of the optimum model, compared to that of the base model, is increased by 36%. The loss of viscosity through the diffuser is estimated less than 5%.

A Design Optimization Study of Diffuser Shape in a Supersonic Inlet

  • Lim, S.;Koh, D.H.;Kim, S.D.;Song, D.J.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.756-760
    • /
    • 2008
  • Optimum shape of Double-cone supersonic inlet is studied by using numerical methods. Double-cone intake shape is used for the design optimization study. And the total pressure recovery at the exit is used to assess the aerodynamic performance of the inlet.

  • PDF

A New Focus Measure Method Based on Mathematical Morphology for 3D Shape Recovery (3차원 형상 복원을 위한 수학적 모폴로지 기반의 초점 측도 기법)

  • Mahmood, Muhammad Tariq;Choi, Young Kyu
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.1
    • /
    • pp.23-28
    • /
    • 2017
  • Shape from focus (SFF) is a technique used to reconstruct 3D shape of objects from a sequence of images obtained at different focus settings of the lens. In this paper, a new shape from focus method for 3D reconstruction of microscopic objects is described, which is based on gradient operator in Mathematical Morphology. Conventionally, in SFF methods, a single focus measure is used for measuring the focus quality. Due to the complex shape and texture of microscopic objects, single measure based operators are not sufficient, so we propose morphological operators with multi-structuring elements for computing the focus values. Finally, an optimal focus measure is obtained by combining the response of all focus measures. The experimental results showed that the proposed algorithm has provided more accurate depth maps than the existing methods in terms of three-dimensional shape recovery.

3D Object's shape and motion recovery using stereo image and Paraperspective Camera Model (스테레오 영상과 준원근 카메라 모델을 이용한 객체의 3차원 형태 및 움직임 복원)

  • Kim, Sang-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.10B no.2
    • /
    • pp.135-142
    • /
    • 2003
  • Robust extraction of 3D object's features, shape and global motion information from 2D image sequence is described. The object's 21 feature points on the pyramid type synthetic object are extracted automatically using color transform technique. The extracted features are used to recover the 3D shape and global motion of the object using stereo paraperspective camera model and sequential SVD(Singuiar Value Decomposition) factorization method. An inherent error of depth recovery due to the paraperspective camera model was removed by using the stereo image analysis. A 30 synthetic object with 21 features reflecting various position was designed and tested to show the performance of proposed algorithm by comparing the recovered shape and motion data with the measured values.

Mechanical Properties and Shape Memory Characteristics of NiAl Alloys by Powder Metallurgy (분말야금법으로 제작한 NiAl합금의 기계적성질 및 형상기억특성)

  • Han, Chang-Suk;Jin, Sung-Yooun;Kwon, Hyuk-Ku
    • Korean Journal of Materials Research
    • /
    • v.30 no.5
    • /
    • pp.231-238
    • /
    • 2020
  • The composition of martensite transformation in NiAl alloy is determined using pure nickel and aluminum powder by vacuum hot press powder metallurgy, which is a composition of martensitic transformation, and the characteristics of martensitic transformation and microstructure of sintered NiAl alloys are investigated. The produced sintered alloys are presintered and hot pressed in vacuum; after homogenizing heat treatment at 1,273 K for 86.4 ks, they are water-cooled to produce NiAl sintered alloys having relative density of 99 % or more. As a result of observations of the microstructure of the sintered NiAl alloy specimens quenched in ice water after homogenization treatment at 1,273 K, it is found that specimens of all compositions consisted of two phases and voids. In addition, it is found that martensite transformation did not occur because surface fluctuation shapes did not appear inside the crystal grains with quenching at 1,273 K. As a result of examining the relationship between the density and composition after martensitic transformation of the sintered alloys, the density after transformation is found to have increased by about 1 % compared to before the transformation. As a result of examining the relationship between the hardness (Hv) at room temperature and the composition of the matrix phase and the martensite phase, the hardness of the martensite phase is found to be smaller than that of the matrix phase. As a result of examining the relationship between the temperature at which the shape recovery is completed by heating and the composition, the shape recovery temperature is found to decrease almost linearly as the Al concentration increases, and the gradient is about -160 K/at% Al. After quenching the sintered NiAl alloys of the 37 at%Al into martensite, specimens fractured by three-point bending at room temperature are observed by SEM and, as a result, some grain boundary fractures are observed on the fracture surface, and mainly intergranular cleavage fractures.

Synthesis of Polyurethanes Containing Poly(dimethyl siloxane) and Their Thermal and Shape Memory Properties (폴리디메틸실록산 성분을 포함하는 폴리우레탄의 합성과 이들의 열적 및 형상기억 특성)

  • Ra, Sang Hee;Kim, Young Ho
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.602-612
    • /
    • 2014
  • Polyurethanes containing poly(dimethyl siloxane) (PDMS) unit, PU-Si, were synthesized and their thermal and shape memory properties were investigated. Various amounts of PDMS units were incorporated via a solution polymerization method using mixed diols of poly(tetramethylene ether glycol) (PTMEG) and PDMS-diol as the soft segment (SS) and methylene diphenyl diisocyanate and 1,4-butanediol as the hard segment (HS). Two series of PU-Si samples with an HS content of 23% or 32% were prepared and analyzed. For PU-Si with an HS content of 23%, both the cold crystallization temperature ($T_{cc}$) and melt crystallization temperature of the SS domain moved higher temperature with increasing PDMS content, while the melting temperature ($T_m$) of the SS domain remained unaffected. The increase in HS content from 23% to 32% resulted in the increased $T_m$ and disappearance of $T_{cc}$. The shape recovery of PU-Si flim with an HS content of 32% increased while its shape retention decreased as PDMS content increased.

Synthesis and Characteristics of 2 Step-curable Shape Memory Polyurethane (2단계 경화형 형상기억 폴리우레탄의 합성 및 분석)

  • Noh, Geon Ho;Lee, Seungjae;Bae, Seong-Guk;Jang, Seong-Ho;Lee, Won-Ki
    • Journal of Environmental Science International
    • /
    • v.27 no.11
    • /
    • pp.1023-1028
    • /
    • 2018
  • Shape memory materials are widely used in high-tech industries. Although shape memory polymers have been developed, they have a disadvantage, only unidirectional resilience. Shape memory polymers with bi-directional recovery resilience have been actively studied. In this study, a bidirectional shape memory polyurethane was synthesized using poly(${\varepsilon}$-caprolactone) diol, methylene dicyclohexyl diisocyanate, and hydroxyethyl acrylate. The first physical curing occurred between hard segments and hydrogen bondings when the solution was dried. The second curing in acrylate groups was performed by UV exposure. A degree of curing was analyzed by infrared spectroscopy. The shape memory properties of 2 step-cured polyurethanes were investigated as a function of UV curing time.

Analysis of Cleaning Sponge Ball Recovery Performance According to Vortex Promoter Design Parameters in CTCS for Power Plant (발전소용 CTCS 내 Vortex Promoter 설계 변수에 따른 세척용 스폰지 볼 회수성능 분석)

  • Dawoon Jung;Seungyul Lee;Dongsun Kim;Hyunkyu Suh
    • Journal of ILASS-Korea
    • /
    • v.28 no.3
    • /
    • pp.126-133
    • /
    • 2023
  • This study analyzes the flow characteristics and sponge ball recovery performance in a ball strainer according to vortex promoter design variables through flow-particle analysis based on actual experiments to derive a method for improving the recovery rate of cleaning sponge balls of CTCS applied to existing power plants. Based on the ball strainer in CTCS used in the power plant, the experiment was conducted by changing the design factor of the improved shape. In addition, flow and particle analysis were performed under the same conditions as the experiment to numerically the flow characteristics and recovery rate in the ball strainer according to the design factor of the vortex promoter. As a result of the study, it was confirmed that the recovery performance was improved by about 3% by changing the design height of the Vortex promoter. And when comparing the difference between maximum and minimum recovery rate, it was found that the effect on the recovery performance increased slightly according to the distance condition compared to the vortex promoter design height condition.

Analysis of Switching Noise Time Characteristic and Estimation of Frequency Spectrum (스위칭 잡음의 시간 특성 분석을 통한 주파수 특성 예측)

  • Choi, Han-Ol;Ryu, Seung-Real;Kim, Eun-Ha;Park, Dong-Chul;Lee, Jae-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.5
    • /
    • pp.640-645
    • /
    • 2012
  • DC-DC converter and DC-AC inverter in a hybrid electric vehicle (HEV) generate the switching noise. It may be generated by the reverse recovery operation of the power diode in the switching circuit of the converter or the inverter. The shape of the reverse recovery region may be determined by both reverse time and recovery time in the diode. So, in this paper, the frequency spectrum of switching noise was estimated by the shape of the reverse recovery region and compared with the measured results. It shows that the meaningful region of the frequency spectrum is directly related with the reverse time.