• Title/Summary/Keyword: Shape of displacement

Search Result 1,048, Processing Time 0.023 seconds

An Analysis of the Frictional Energy on the Rubber Block (고무 블록의 마찰에너지 해석)

  • Yoo, Hyun-Seung;Kim, Doo-Man;Lee, Sang-Ju;Ko, Bum-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.619-626
    • /
    • 2007
  • The analysis of the frictional energy of the rubber block with contact to the surface is necessary to study the wear for rubber. It is important to define the relationship of the frictional energy and wear, as the most theory of the wear of rubber product is based on the frictional energy of rubber block. To predict the life of the rubber block, the most of research has been focused on the use of the finite element analysis or the actual experiments which need the many time and expensive costs.Therefore, this research is achieved the successful results of the analysis to the frictional energy by analytic method. This frictional energy is function of the material properties, the shape of block, the vertical and horizontal load and the block moving speed. The analytical results are compared with the test results of this paper which can be used for the analysis of the friction behavior for the wear estimation of the rubber products.

Anterior Cruciate Ligament Rupture in a Korean Native Cattle (한우 싸움소에서 발생한 전십자인대 파열)

  • Lee, Hyun;Yun, Sung-Ho;Park, Jae-Ok;Kim, Seung-Joon;Kwon, Young-Sam;Jang, Kwang-Ho
    • Journal of Veterinary Clinics
    • /
    • v.31 no.1
    • /
    • pp.54-56
    • /
    • 2014
  • A 9-year-old Korean native cattle was referred with chief complaint of left hind limb lameness during 2 months. He could not bear a weight on the left hind limb. On palpation, the stifle joint was swollen and mild fever was felt. In X-ray images, increased joint fluid, subchondral bone erosions, osteophyte formation along the trochlear ridge, and changes in the shape of the infrapatellar fat pad were shown. Cranial displacement of the tibia and intercondylar eminence could be seen. Based on the history, physical examination and radiographic findings, the bull was diagnosed as anterior cruciate ligament rupture. Because he could not participate in further bullfighting competition anymore, we indicated the slaughter as soon as possible.

Pressure loading, end- shortening and through- thickness shearing effects on geometrically nonlinear response of composite laminated plates using higher order finite strip method

  • Sherafat, Mohammad H.;Ghannadpour, Seyyed Amir M.;Ovesy, Hamid R.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.5
    • /
    • pp.677-691
    • /
    • 2013
  • A semi-analytical finite strip method is developed for analyzing the post-buckling behavior of rectangular composite laminated plates of arbitrary lay-up subjected to progressive end-shortening in their plane and to normal pressure loading. In this method, all the displacements are postulated by the appropriate harmonic shape functions in the longitudinal direction and polynomial interpolation functions in the transverse direction. Thin or thick plates are assumed and correspondingly the Classical Plate Theory (CPT) or Higher Order Plate Theory (HOPT) is applied. The in-plane transverse deflection is allowed at the loaded ends of the plate, whilst the same deflection at the unloaded edges is either allowed to occur or completely restrained. Geometric non-linearity is introduced in the strain-displacement equations in the manner of the von-Karman assumptions. The formulations of the finite strip methods are based on the concept of the principle of the minimum potential energy. The Newton-Raphson method is used to solve the non-linear equilibrium equations. A number of applications involving isotropic plates, symmetric and unsymmetric cross-ply laminates are described to investigate the through-thickness shearing effects as well as the effect of pressure loading, end-shortening and boundary conditions. The study of the results has revealed that the response of the composite laminated plates is particularly influenced by the application of the Higher Order Plate Theory (HOPT) and normal pressure loading. In the relatively thick plates, the HOPT results have more accuracy than CPT.

Free vibration analysis of combined system with variable cross section in tall buildings

  • Jahanshahia, Mohammad Reza;Rahgozar, Reza
    • Structural Engineering and Mechanics
    • /
    • v.42 no.5
    • /
    • pp.715-728
    • /
    • 2012
  • This paper deals with determining the fundamental frequency of tall buildings that consist of framed tube, shear core, belt truss and outrigger systems in which the framed tube and shear core vary in size along the height of the structure. The effect of belt truss and outrigger system is modeled as a concentrated rotational linear spring at the belt truss and outrigger system location. Many cantilevered tall structures can be treated as cantilevered beams with variable cross-section in free vibration analysis. In this paper, the continuous approach, in which a tall building is replaced by an idealized cantilever continuum representing the structural characteristics, is employed and by using energy method and Hamilton's variational principle, the governing equation for free vibration of tall building with variable distributed mass and stiffness is obtained. The general solution of governing equation is obtained by making appropriate selection for mass and stiffness distribution functions. By applying the separation of variables method for time and space, the governing partial differential equation of motion is reduced to an ordinary differential equation with variable coefficients with the assumption that the transverse displacement is harmonic. A power-series solution representing the mode shape function of tall building is used. Applying boundary conditions yields the boundary value problem; the frequency equation is established and solved through a numerical process to determine the natural frequencies. Computer program has been developed in Matlab (R2009b, Version 7.9.0.529, Mathworks Inc., California, USA). A numerical example has been solved to demonstrate the reliability of this method. The results of the proposed mathematical model give a good understanding of the structure's dynamic characteristics; it is easy to use, yet reasonably accurate and suitable for quick evaluations during the preliminary design stages.

Seismic behavior of caisson-type gravity quay wall renovated by rubble mound grouting and deepening

  • Kim, Young-Sang;Nguyen, Anh-Dan;Kang, Gyeong-O
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.447-463
    • /
    • 2021
  • Caisson-type structures are widely used as quay walls in coastal areas. In Korea, for a long time, many caisson-type quay walls have been constructed with a low front water depth. These facilities can no longer meet the requirements of current development. This study developed a new technology for deepening existing caisson-type quay walls using grouting and rubble mound excavation to economically reuse them. With this technology, quay walls could be renovated by injecting grout into the rubble mound beneath the front toe of the caisson to secure its structure. Subsequently, a portion of the rubble mound was excavated to increase the front water depth. This paper reports the results of an investigation of the seismic behavior of a renovated quay wall in comparison to that of an existing quay wall using centrifuge tests and numerical simulations. Two centrifuge model tests at a scale of 1/120 were conducted on the quay walls before and after renovation. During the experiments, the displacements, accelerations, and earth pressures were measured under five consecutive earthquake input motions with increasing magnitudes. In addition, systematic numerical analyses of the centrifuge model tests were also conducted with the PLAXIS 2D finite element (FE) program using a nonlinear elastoplastic constitutive model. The displacements of the caisson, response accelerations, deformed shape of the quay wall, and earth pressures were investigated in detail based on a comparison of the numerical and experimental results. The results demonstrated that the motion of the caisson changed after renovation, and its displacement decreased significantly. The comparison between the FE models and centrifuge test results showed good agreement. This indicated that renovation was technically feasible, and it could be considered to study further by testbed before applying in practice.

AN EXPERIMENTAL STUDY OF THE IRRADIATION EFFECTS ON RAT PAROTID GLAND (방사선조사가 백서 이하선에 미치는 영향에 관한 실험적 연구)

  • Lee Kyu Chan;Lee Sang Rae
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.16 no.1
    • /
    • pp.49-58
    • /
    • 1986
  • This study was designed to investigate the irradiation effects on the rat parotid gland, applied to the head and neck region. For this experiment, twenty-four rats, feeded under the even condition, were used as experimental animals. Twenty rats were used for experimental group and the rest were assigned to the control group. The experimental group was singly irradiated with 10Gray through Cobalt-60 radiotherapy device, Picker model 4M 60 (Field size; l2×5㎝, SSD; 50㎝, Depth; 1㎝). The experimental animals of both group were sacrificed each four animals in 2 days, 1week, 2weeks, 3weeks and 4weeks after irradiation. The specimens were examined through the light microscope using the H-E stain and H stain by routin procedure. The other specimens were observed under the fluorescence microscope using the B-O dichroic mirror and Y455 barrier filter after PA-ACH stain. 1. The results of this study were obtained as follows, The parotid acini were severely degenerated and the intraacinar spaces were widened. Within the acini, retained secretory granules and increased fibrosis were observed. Also the shape and the size of the acini showed very irregular atrophic degenerations. 2. The nuclei showed severe pyknosis, displacement and irregular aggregated appearance. 3. The tissue changes of the parotid acini were initiated after 2 days of irradiation and most severely appeared at the second week of irradiation, but almost returned to normal. 4. The salivary ducts of the parotid gland were severely atrophied, discontinued but initiated to regenerated after 3 weeks of irradiation.

  • PDF

Analysis of Influencing Factors on Cavity Collapse and Evaluation of the Existing Cavity Management System (공동 붕괴를 유발하는 영향인자 분석 및 기존 공동관리 시스템 평가)

  • Lee, Kicheol;Park, Jongho;Choi, Byeong-Hyun;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.1
    • /
    • pp.45-54
    • /
    • 2018
  • In this study, numerical analysis is performed to determine highly influential factors that increase the possibility of asphalt road collapse due to cavity underneath the road. The considered influence factors on road collapse due to underground cavity were the asphalt layer thickness, the cover depth, the cavity width, and the cavity height. The concentrated load and uniform distributed pressure were applied on the top surface of asphalt pavement layers with different shape of cavity and asphalt thickness. For each analysis case of given cavity and asphalt thickness, failure load was analyzed under displacement controlled condition. Based on the analyzed failure loads, the applicability of the cavity management system developed by Seoul city was evaluated. As a result of the analysis, the effect of cavity height on road collapse was not significant while the other factors considerably influenced road collapse. Consequently, degree of road collapse susceptibility should be classified by failure load rather than by the condition of existing cavity.

THE EFFECT OF REMOVAL OF RESIDUAL PEROXIDE ON THE SHEAR BOND STRENGTH AND THE FRACTURE MODE OF COMPOSITE RESIN-ENAMEL AFTER TOOTH BLEACHING (생활치 표백술 후 수종의 자유 산소기 제거제 처리가 복합 레진-법랑질 전단 접착 강도 및 파절 양상에 미치는 영향)

  • 임경란;금기연;김애리;장수미
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.5
    • /
    • pp.399-408
    • /
    • 2001
  • Tooth bleaching has been prevailing recently for its ability to recover the color and shape of natural teeth without reduction of tooth material. However, it has been reported that bleaching procedure adversely affects the adhesive bond strength of composite resin to tooth. At the same time the bond strength was reported to be regained by application of some chemical agents. The purpose of this in vitro study was to investigate the effect of the removal of residual peroxide on the composite- enamel adhesion and also evaluated fracture mode between resin and enamel after bleaching. Sixty extracted human anterior and premolars teeth were divided into 5 groups and bleached by combined technique using of office bleaching with 35 % hydrogen peroxide and matrix bleaching with 10% carbamide peroxide for 4 weeks. After bleaching, the labial surfaces of each tooth were treated with catalase, 70% ethyl alcohol, distilled water and filled with composite resin. Shear bond strength was tested and the fractured surfaces were also examined with SEM. Analysis revealed significantly higher bond strength values. (p<0.05) for catalase-treated specimens, but water-treated specimens showed reduction of bond strength, alcohol- treated specimens had medium value between the two groups(p<0.05). The fracture mode was shown that the catalase group and the alcohol group had cohesive failure but the water sprayed group had adhesive failure. It was concluded that the peroxide residues in tooth after bleaching seems to be removed by gradual diffusion and the free radical oxygen from peroxide prevents polymerization by combining catalyst in the resin monomer. Therefore it may be possible to eliminate the adverse effect on the adhesion of composite resin to enamel after bleaching by using water displacement solution or dentin bonding agent including it for effective removal of residual peroxide.

  • PDF

Evaluation of TMJ sound on the subject with TMJ disorder by Joint Vibration Analysis

  • Hwang, In-Taek;Jung, Da-Un;Lee, Jae-Hoon;Kang, Dong-Wan
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.1
    • /
    • pp.26-30
    • /
    • 2009
  • STATEMENT OF PROBLEM. Qualitative and semi-quantitative methods have been developed for TMJ sound classification, but the criteria presented are completely inhomogeneous. Thus, to develop more objective criteria for defining TMJ sounds, electroacoustical systems have been developed. We used Joint vibration analysis in the BioPAK system(Bioresearch Inc., Milwaukee, USA) as the electrovibratography. PURPOSE. The aim of this study was to examine the TMJ sounds with repect to frequency spectra patterns and the integral > 300 Hz /< 300 Hz ratios via six-months follow-up. MATERIAL AND METHODS. This study was done before and after the six-months recordings with 20 dental school students showed anterior disk displacement with reduction. Joint vibrations were analyzed using a mathematical technique known as the Fast Fourier Transform. RESULTS. In this study Group I and Group II showed varied integral > 300 /< 300 ratios before and after the six-months recordings. Also, by the comparative study between the integral > 300 /< 300 ratios and the frequency spectrums, it was conceivable that the frequency spectrums showed similar patterns at the same location that the joint sound occurred before and after the six-months recordings. while the frequency spectrums showed varied patterns at the different locations that the joint sound occurred before and after six-month recordings, it would possibly be due to the differences in the degree of internal derangement and/or in the shape of the disc. CONCLUSIONS. It is suggested that clinicians consider the integral > 300 /< 300 ratios as well as the frequency spectrums to decide the starting-point of the treatment for TMJ sounds.

Experimental study on shear capacity of SRC joints with different arrangement and sizes of cross-shaped steel in column

  • Wang, Qiuwei;Shi, Qingxuan;Tian, Hehe
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.267-287
    • /
    • 2016
  • The seismic performance of the ordinary steel reinforced concrete (SRC) columns has no significant improvement compared to the reinforced concrete (RC) columns mainly because I, H or core cross-shaped steel cannot provide sufficient confinement for core concrete. Two improved SRC columns by constructing with new-type shaped steel were put forward on this background, and they were named as enlarging cross-shaped steel and diagonal cross-shaped steel for short. The seismic behavior and carrying capacity of new-type SRC columns have been researched theoretically and experimentally, while the shear behavior remains unclear when the new-type columns are joined onto SRC beams. This paper presents an experimental study to investigate the shear capacity of new-type SRC joints. For this purpose, four new-type and one ordinary SRC joints under low reversed cyclic loading were tested, and the failure patterns, load-displacement hysteretic curves, joint shear deformation and steel strain were also observed. The ultimate shear force of joint specimens was calculated according to the beam-end counterforce, and effects of steel shape, load angel and structural measures on shear capacity of joints were analyzed. The test results indicate that: (1) the new-type SRC joints display shear failure pattern and has higher shear capacity than the ordinary one; (2) the oblique specimens have good bearing capacity if designed reasonably; and (3) the two proposed construction measures have little effect on the shear capacity of SRC joints embedded with diagonal cross-shaped steel. Based on the mechanism observed from the test, the formulas for calculating ultimate shear capacity considering the main factors (steel web, stirrup and axial compression ratio) were derived, and the calculated results agreed well with the experimental and simulated data.