• 제목/요약/키워드: Shape of Lattice

검색결과 172건 처리시간 0.026초

Analysis of Spiral Lattice Girder Shape in preparation for HSR Speed Increase

  • Eum, Ki-Young;Lee, Jee-Ha;Park, Young-Kon;Yun, Jangho;Jeong, Seongwoon
    • International Journal of Railway
    • /
    • 제6권4호
    • /
    • pp.160-168
    • /
    • 2013
  • A spiral lattice girder-reinforced Bi-block sleeper which has enhanced durability against increasingly growing impact force and vibration by wheel load and improved structural performance while train runs at 350km/h high speed is hereby proposed. The section of a spiral lattice girder has stable and superior structural performance thanks to its confinement effect. To compare and analyze the structural performance of spiral lattice girder-reinforced bi-block sleeper, strain and stress distribution were evaluated after applying same load condition as existing triangular lattice girder-reinforced biblock sleeper, and to compare the structural performance of triangular lattice girder and spiral lattice girder, structural analysis of lattice girder was performed separately. As a result, a spiral lattice girder proved to have had superior structural characteristics to bi-block sleeper, and furthermore as a result of evaluating the fastener interface and constructibility with shape-improved lattice girder, no interference with existing railroad structure was found and in terms of cost efficiency, a spiral lattice girder appeared to be superior to existing lattice girder.

An Approximate Method for the Buckling Analysis of a Composite Lattice Rectangular Plate

  • Kim, Yongha;Kim, Pyunghwa;Kim, Hiyeop;Park, Jungsun
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권3호
    • /
    • pp.450-466
    • /
    • 2017
  • This paper defines the modified effective membrane stiffness, bending stiffness considering the directionally dependent mechanical properties and mode shape function of a composite lattice rectangular plate, which is assumed to be a Kirchhoff-Love plate. It subsequently presents an approximate method of conducting a buckling analysis of the composite lattice rectangular plate with various boundary conditions under uniform compression using the Ritz method. This method considers the coupled buckling mode as well as the global and local buckling modes. The validity of the present method is verified by comparing the results of the finite element analysis. In addition, this paper performs a parametric analysis to investigate the effects of the design parameters on the critical load and buckling mode shape of the composite lattice rectangular plate based on the present method. The results allow a database to be obtained on the buckling characteristics of composite lattice rectangular plates. Consequently, it is concluded that the present method which facilitates the calculation of the critical load and buckling mode shape according to the design parameters as well as the parametric analysis are very useful not only because of their structural design but also because of the buckling analysis of composite lattice structures.

Lattice Boltzmann Method을 이용한 적혈구의 정적인 모양과 동적변형에 대한 연구 (SINGLE-PHASE MULTI-COMPONENT SIMULATION OF STATIC SHAPE AND DYNAMIC DEFORMATION OF RED BLOOD CELLS USING LATTICE BOLTZMANN METHOD)

  • ;김용현;이준상
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.186-196
    • /
    • 2008
  • The dependence of the rheological properties of blood on shape, aggregation, and deformability of red blood cells (RBCs) has been investigated using hybrid systems by coupling fluid with solid models. We present a simple approach for simulating blood as a multi-component fluid, in which RBCs are modeled as droplets of acquired biconcave shape. We used lattice Boltzmann method (LBM) due to its excellent numerical stability as a simulation tool. The model enables us to control the droplet static shape by imposing non-isotropic surface tension force on the interface between the two components. The use of the proposed non-isotropic surface tension method is justified by the Norris hypothesis. This hypothesis states that the shape of the RBC is due to a non-uniform interfacial surface tension force acting on the RBC periphery. This force is caused by the unbalanced distribution of the lipid molecules on the surface of the RBC. We also used the same concept to investigate the dynamic shape change of the RBC while flowing through the microvasculature, and to explore the physics of the Fahraeus, and the Fahraeus-Lindqvist effects.

  • PDF

Lattice Boltzmann Method을 이용한 적혈구의 정적인 모양과 동적변형에 대한 연구 (SINGLE-PHASE MULTI-COMPONENT SIMULATION OF STATIC SHAPE AND DYNAMIC DEFORMATION OF RED BLOOD CELLS USING LATTICE BOLTZMANN METHOD)

  • ;김용현;이준상
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.186-196
    • /
    • 2008
  • The dependence of the rheological properties of blood on shape, aggregation, and deformability of red blood cells (RBCs) has been investigated using hybrid systems by coupling fluid with solid models. We present a simple approach for simulating blood as a multi-component fluid, in which RBCs are modeled as droplets of acquired biconcave shape. We used lattice Boltzmann method (LBM) due to its excellent numerical stability as a simulation tool. The model enables us to control the droplet static shape by imposing non-isotropic surface tension force on the interface between the two components. The use of the proposed non-isotropic surface tension method is justified by the Norris hypothesis. This hypothesis states that the shape of the RBC is due to a non-uniform interfacial surface tension force acting on the RBC periphery. This force is caused by the unbalanced distribution of the lipid molecules on the surface of the RBC. We also used the same concept to investigate the dynamic shape change of the RBC while flowing through the microvasculature, and to explore the physics of the Fahraeus, and the Fahraeus-Lindqvist effects.

  • PDF

U-플랜지 트러스 보의 구조 내력에 관한 실험 연구 (Experimental Study on the Structural Capacity of the U-Flanged Truss Steel Beam)

  • 오명호;김영호;강재윤;김명한
    • 한국공간구조학회논문집
    • /
    • 제18권4호
    • /
    • pp.113-121
    • /
    • 2018
  • U-flanged truss beam is composed of u-shaped upper steel flange, lower steel plate of 8mm or more thickness, and connecting lattice bars. Upper flange and lower plate are connected by the diagonal lattice bars welded on the upper and lower sides. In this study the structural experiments on the U-flanged truss beams with various shapes of upper flange were performed, and the flexural and shear capacities of U-flanged truss beam in the construction stage were evaluated. The principal test parameters were the shape of upper flange and the alignment space of diagonal lattice bars. In all the test specimens, the peak loads were determined by the buckling of lattice bar regardless of the upper flange shape. The test results have shown that the buckling of lattice bar is very important design factor and there is no need to reinforce the basic u-shaped upper flange. However, the early lattice buckling occurred in the truss beam with upper steel bars because of the insufficient strength and stiffness of upper chord, and the reinforcement in the upper chord is necessary. The formulae of Eurocode 3 (2005) have presented more exact evaluations of lattice buckling load than those of KBC 2016.

증강현실 환경을 이용한 효율적인 물리기반 형상변형 기술 (An Effective Physics Based Deformation Technique Using Augmented Reality Environments)

  • 최한균;김현수;박민기;이관행
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.90-93
    • /
    • 2009
  • 물리기반 형상변형 기술은 게임 및 시뮬레이션과 같은 분야를 중심으로 점차 그 사용이 증가하는 추세이고 이에 대한 다양한 연구가 이루어지고 있다. 하지만 아직까지 3 차원 객체와 물리기반 변형기술간의 상호작용을 증대시키기 위한 연구는 원활이 이루어지지 않고 있다. 본 연구는 사용자의 몰입감을 증가시키고 변형의 효율성을 높이기 위해서 증강현실 환경을 이용한 물리기반 형상변형을 제안한다. 증강현실 환경 하의 시스템에서 3 차원 객체와 사용자의 효율적인 상호작용을 위해서는 물리기반 형상변형이 실시간으로 이루어져야 한다. 제안된 방법에서는, RBF(Radial Basis Function) [1] 와 LSM (Lattice Shape Matching) [2, 3]방법을 조합해서 메쉬 모델에 적용하였다. 또한, 물리기반 형상변형을 위해 lattice shape matching 의 동적 움직임을 계산하였다. 최종적으로, 이러한 방법들을 증강현실 환경 하에서 구현하였다.

  • PDF

TMD 설치에 따른 돔 형상 대공간 구조물의 지진응답분석 (Seismic Response Analysis of Dome-Shaped Large Spatial Structures According to TMD Installation)

  • 구승연;유상호;김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제23권4호
    • /
    • pp.27-34
    • /
    • 2023
  • In this study, the seismic response characteristics of the three analysis model with or without TMD were investigated to find out the effective dome shape. The three analysis models are rib type, lattice type and geodesic type dome structure composed of space frame. The maximum vertical and horizontal displacements were evaluated at 1/4 point of the span by applying the resonance harmonic load and historical earthquake loads (El Centro, Kobe, Northridge earthquakes). The study of the effective TMD installation position for the dome structure shows that seismic response control was effective when eight TMDs were installed in all types of analysis model. The investigation of the efficiency of TMD according to dome shape presents that lattice dome and geodesic dome show excellent control performance, while rib dome shows different control performance depending on the historical seismic loads. Therefore, lattice and geodesic types are desirable for seismic response reduction using TMD compared to rib type.

다양한 기판위에 성장한 1차원 ZnO 나노막대의 특성평가 및 미세구조 분석 (Microstructural analysis and characterization of 1-D ZnO nanorods grown on various substrates)

  • 공보현;김동찬;조형균
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.116-117
    • /
    • 2006
  • I-D ZnO nanostructures were fabricated by thermal evaporation method on Si(100), GaN and $Al_2O_3$ substrates without a catalyst at the reaction temperature of $700^{\circ}C$. Only pure Zn powder was used as a source material and Ar was used as a carrier gas. The shape and growth direction of synthesized ZnO nanostructures is determined by the crystal structure and the lattice mismatch between ZnO and substrates. The ZnO nanostructure on Si substrate were inclined regardless of their substrate orientation. The origin of ZnO/Si interface is highly lattice-mismatched and the surface of the Si substrate inevitably has the $SiO_2$ layer. The ZnO nanostructure on the $Al_2O_3$ substrate was synthesized into the rod shape and grown into particular direction. For the GaN substrate, however, ZnO nanostructure with the honeycomb-like shape was vertically grown, owing to the similar lattice parameter with GaN substrate.

  • PDF

마이크로 격자트러스모델을 이용한 반복강성제어법에 의한 콘크리트 구조형태의 최적화 (Structural Layout Design for Concrete Structures Based on the Repeated Control Method by Using Micro Lattice Truss Model)

  • 최익창;유미일랑
    • 콘크리트학회논문집
    • /
    • 제20권6호
    • /
    • pp.705-712
    • /
    • 2008
  • 본 연구에서는 그라운드 구조법을 이용하여 콘크리트 구조형태의 최적화에 대한 수치 실험을 하였다. 마이크로 격자 모델은 단위 셀의 집합체로 구성되었다. 해석 과정은 각 부재의 응답계를 강성에 피드백 시켜서 유한요소해석을 반복하였다. 이 해석의 반복을 통하여, 트러스 모델은 수리적 최적화 수법이 아니라 국소적인 응력 상태를 이용하여 위상적인 구조 형태와 구조적 형상을 표현하였다. 격자 트러스 모델을 여러 예제에 적용하여 형상 배치 문제를 해석하는데 성공하였다.