We suggest a 3D vision inspection algorithm which is based on the external shape feature. Because many electronic parts have the regular shape, if we have the database of pattern and can recognize the object using the database of the object s pattern, we can inspect many types of electronic parts. Our proposed algorithm uses the geometrical pattern matching method and 3D database on the electronic parts. We applied our suggested algorithm fer inspecting several objects including typical IC and capacitor. Through the experiments, we could find that our suggested algorithm is more effective and more robust to the inspection environment(rotation angle, light source, etc.) than conventional 2D inspection methods. We also compared our suggested algorithm with the feature space trajectory method.
An image feature extraction method for the low contrast fluoresceln angiogram in dlabetes was studied. To obtain effective image segmentation, an adaptive local difference image is generated and relaxation process are applied to this difference Image. By the use of distance transformed data with segmented image, shape and location of feature regions were obtained. It was shown that the location and shape descriptions of Impaired blood vessel networks and retinal regions are can he utilized for the diagnosis of diabetes and other disease.
Kim, Byung-Gon;Han, Joung-Woon;Lee, Jaeho;Haechull Lim
대한전자공학회:학술대회논문집
/
대한전자공학회 2000년도 ITC-CSCC -2
/
pp.869-872
/
2000
Although many content-based image retrieval systems using shape feature have tried to cover rotation-, position- and scale-invariance between images, there have been problems to cover three kinds of variance at the same time. In this paper, we introduce new approach to extract shape feature from image using MBR(Minimum Bounding Rectangle). The proposed method scans image for extracting MBR information and, based on MBR information, compute contour information that consists of 16 points. The extracted information is converted to specific values by normalization and rotation. The proposed method can cover three kinds of invariance at the same time. We implemented our method and carried out experiments. We constructed R*_tree indexing structure, perform k-nearest neighbor search from query image, and demonstrate the capability and usefulness of our method.
단백질 분자는 포켓 위치에서 유사한 형상을 갖는 다른 분자와 결합되며, 포켓은 단백질 분자의 형상을 묘사하기 위한 참조 점으로 사용될 수 있다. Harris 검출기는 2 차원이나 3차원 객체의 특징 점을 검출하기 위해 널리 사용된다. 특징 점들은 데이터의 변화율이 높은 영역과 포켓 영역에서 발견된다. 일반적으로 포켓 영역은 함몰된 형태로 존재하기 때문에 이 영역에는 다른 영역에 비해 다수의 특징 점들이 존재한다. 특징 점들을 포함하는 voxel cube를 연속적으로 분할함으로써 포켓 영역을 발견할 수 있었고, 포켓 영역의 중심 좌표와 특징 점들 간의 Euclidean 거리를 계산한 후 이들을 크기순으로 정렬 하였다. 정렬된 거리에 대한 그래프는 단백질 분자의 형상과 특징 점들의 분포에 대한 정보를 제공하므로 단백질 분자를 형상별로 분리 할 수 있었다. 본 연구에서는 인위적인 잡음을 단백질 분자에 추가하여 형상이 왜곡된 분자를 얻었고, 왜곡된 분자에 대해서도 95 % 이상의 정확 도로 형상을 인식 할 수 있었다. 정확한 단백질 분자의 형상 인식은 분자들 간의 결합특성을 예측할 수 있는 중요한 정보를 제공한다.
본 연구에서는 축척과 갱신 주기가 상이한 공간 데이터 셋에서 기하정보를 이용한 형상유사도 기반 면 객체 매칭을 통하여 갱신 객체를 탐지하는 방법을 제안하였다. 이를 위하여, 먼저 축척이 상이한 공간 데이터 셋의 매칭 관계를 분석하여 갱신 객체를 정의하였다. 다음으로 시멘틱 매칭을 통하여 추출된 기준점을 이용한 아핀변환을 수행하여 축척이 상이한 데이터간의 계통오차를 제거하고, 중첩 분석을 통하여 다수 면 객체를 단일 객체화 하였다. 각각의 단일 객체를 대상으로 형상유사도 기반의 면 객체 매칭을 적용하여 갱신 객체를 탐지하게 된다. 제안된 갱신 객체 탐지 방법을 우리나라의 수치지도 2.0과 도로명주소 전자지도에 적용한 결과 F-측정값이 0.958로 나타났으며, 시각적 평가에서 유의미한 갱신 객체가 탐지되는 것을 알 수 있었다.
얼굴 검출 기법들의 경우 조명과 배경에 따라 검출의 정확도가 떨어지는 현상이 발생하여, 이를 해결하기 위한 기법들이 요구되고 있다. 본 연구에서는 얼굴의 눈과 입의 성분을 분석하여 인간의 감성 정보를 추출하기 위한 데이터를 획득하고자 한다. 이를 위해 처리속도가 빠르고 환경 요소들에 강인한 검출율을 보이는 얼굴 특징 검출 방법을 제안하였다. 본 방법은 적분 이미지를 적용한 Haar-like Feature기법을 이용하여 얼굴 성분(두 눈, 입)을 검출한 후, 색상 정보를 바탕으로 검출된 성분들을 이진화하고 피부영역과 얼굴 성분영역을 구분한다. 그 후, 빠르고 정확한 shape를 생성하기 위해 베지어 곡선을 이용하여 검출된 성분들의 shape를 생성한다. 제안된 방법의 성능을 평가하기 위하여 Face Recognition Homepage의 데이터를 이용하여 실험을 진행하였으며, 이를 통해 정교한 얼굴 성분 검출이 가능함을 확인하였다.
퍼지 형태학적 형상 분해를 이용한 얼굴인증 과정에서 퍼지척도를 기반으로 한 특징추출 방법을 제안하였다. 형태소에 관계하는 영상정보와 퍼지척도를 기반으로 한 가중치에 대하여 무게중심을 이용하여 인접정보가 고려되었다. 이에 의한 형태학적 침식과 팽창연산자를 정의하여 얼굴영역의 특징점 추출시 기존의 방법보다 4배 이상의 많은 분해영상을 얻을 수 있었다. 결국 특징 벡터를 이용하여 얼굴인증을 수행한 실험결과 기존의 형상분해에 의한 방법보다 특징점 추출과 임계값의 안정성을 확보하여 인식 결과에서 비교우위를 가질 수 있었다.
Recent developments in robotics and intelligent vehicle area, bring interests of people in an autonomous driving ability and advanced driving assistance system. Especially fully automatic parking ability is one of the key issues of intelligent vehicles, and accurate parked vehicles detection is essential for this issue. In previous researches, many types of sensors are used for detecting vehicles, 2D LiDAR is popular since it offers accurate range information without preprocessing. The L shape feature is most popular 2D feature for vehicle detection, however it has an ambiguity on different objects such as building, bushes and this occurs misdetection problem. Therefore we propose the accurate vehicle detection method by using a 3D complete vehicle model in 3D point clouds acquired from front inclined 2D LiDAR. The proposed method is decomposed into two steps: vehicle candidate extraction, vehicle detection. By combination of L shape feature and point clouds segmentation, we extract the objects which are highly related to vehicles and apply 3D model to detect vehicles accurately. The method guarantees high detection performance and gives plentiful information for autonomous parking. To evaluate the method, we use various parking situation in complex urban scene data. Experimental results shows the qualitative and quantitative performance efficiently.
본 논문에서는 18F-FDG PET과 CT에서 추출한 영상인자를 이용하여 비소세포폐암의 전이를 예측하는 머신러닝 모델을 생성하였다. 18F-FDG는 종양의 포도당 대사 시 사용되며 이를 추적하여 환자의 암 세포를 진단하는데 사용되는 의료영상 기법 중 하나이다. PET과 CT 영상에서 추출한 이미지 특징은 종양의 생물학적 특성을 반영하며 해당 ROI로부터 계산되어 정량화된 값이다. 본 연구에서는 환자의 의료영상으로부터 image texture 프절 전이 예측에 있어 유의한 인자인지를 확인하기 위하여 AUC를 계산하고 단변량 분석을 진행하였다. PET과 CT에서 각각 4개(GLRLM_GLNU, SHAPE_Compacity only for 3D ROI, SHAPE_Volume_vx, SHAPE_Volume_mL)와 2개(NGLDM_Busyness, TLG_ml)의 image texture feature를 모델의 생성에 사용하였다. 생성된 각 모델의 성능을 평가하기 위해 accuracy와 AUC를 계산하였으며 그 결과 random forest(RF) 모델의 예측 정확도가 가장 높았다. 추출된 PET과 CT image texture feature를 함께 사용하여 모델을 훈련하였을 때가 각각 따로 사용하였을 때 보다 예측 성능이 개선됨을 확인하였다. 추출된 영상인자가 림프절 전이를 나타내는 바이오마커로서의 가능성을 확인할 수 있었으며 이러한 연구 결과를 바탕으로 개인별 의료 영상을 기반으로 한 비소세포폐암의 치료 전략을 수립할 수 있을 것이라 기대된다.
In this paper, we propose the face identification method which is robust for lighting based on the feature points method. First of all, the proposed method extracts an edge of facial feature. Then, by the hough transform, it determines ellipse parameters of each facial feature from the extracted edge. Finally, proposed method performs the face identification by using parameters. Even if face image is taken under various lighting condition, it is easy to extract the facial feature edge. Moreover, it is possible to extract a subject even if the object has not appeared enough because this method extracts approximately the parameters by the hough transformation. Therefore, proposed method is robust for the lighting condition compared with conventional method. In order to show the effectiveness of the proposed method, computer simulations are done by using the real images.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.