• Title/Summary/Keyword: Shape accuracy

Search Result 1,660, Processing Time 0.028 seconds

A study on the chucking alignment error analysis in coaxial grinding of ferrule (페룰 동축연삭시 척킹 오차 해석)

  • 김동길;김영태;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.9-14
    • /
    • 2002
  • Ferrule is widely used as fiber optic connecters. In fiber-optic communications, the shape accuracy such as coaxiality and cylindricity of ferrule affects insertion loss. When coaxial grinding of ferrule supported by two pin, pin alignment and chucking accuracy are very important. In this research, the kinematic behavior of the ferrule center is investigated in the case where cone-shaped center pins and round circle hales which make contact with each other near the edge of the holes, using homeogenous coordinate transformation and numerical analysis. The obtained results are as follows: The alignment errors between center pins alone do not affect the rotation accuracy of ferrule. The alignment errors between center holes cause a sinusoidal displacement of ferrule. And the maximum displacement of ferrule centers increase in proportion to the center pin angle in the case of a fixed alignment errors

  • PDF

Improvement for Recoating Process of Stereolithography System (광조형 시스템의 리코팅 공정 개선)

  • 이은덕;심재형;안규환;백인환
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.16-23
    • /
    • 2003
  • Keeping the layer thickness constant is very essential for improving the shape accuracy in the stereolithography process. The layer thickness is created by recoating process, and also affected by recoating parameters such as blade speed and thickness. The created layer in this process can determine the whole accuracy of the entire parts. The aim of this paper is to improve the accuracy of the layer thickness by adjusting the recoating process parameters. Several experiments with different recoating conditions are Performed to find the optimal recoating parameters that produce the most accurate layer thickness. The effective recoating method is suggested by measuring and analyzing the cured layer thickness.

Development of Precision Vision Inspection System for Micro Optical Parts using a New Optical Probe Implemented to have Multiple Fields of Views (다중광학창을 가진 광학소자 자동 검사 시스템 개발)

  • 이일환;이기수;박희재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.105-109
    • /
    • 2001
  • The micro optical parts such as ferrules are required to be manufactured within very small tolerances, as the slight deviation of the tolerance would give very large amount of loss in communication efficiency. For efficient optical communication, outer diameter, fiber diameter, fiber separation and eccentricity are significant parameters to be inspected., Thus we developed an automatic inspection system to evaluate shape parameters of the optical fiber connectors(ferrule) upto submicron accuracy using machine vision. new optical probe of multi fields of views has been developed and the image processing and data analysis algorithms have been complemented in real time basis. The developed system is successfully used in the practical ferrule manufacturing industry, and about 0.1$\mu\textrm{m}$ accuracy can be obtained with very fast inspection time.

  • PDF

Performance Comparison of Two Ellipse Fitting-Based Cell Separation Algorithms

  • Cho, Migyung
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.3
    • /
    • pp.215-219
    • /
    • 2015
  • Cells in a culture process transform with time and produce many overlapping cells in their vicinity. We are interested in a separation algorithm for images of overlapping cells taken using a fluorescence optical microscope system during a cell culture process. In this study, all cells are assumed to have an ellipse-like shape. For an ellipse fitting-based method, an improved least squares method is used by decomposing the design matrix into quadratic and linear parts for the separation of overlapping cells. Through various experiments, the improved least squares method (numerically stable direct least squares fitting [NSDLSF]) is compared with the conventional least squares method (direct least squares fitting [DLSF]). The results reveal that NSDLSF has a successful separation ratio with an average accuracy of 95% for two overlapping cells, an average accuracy of 91% for three overlapping cells, and about 82% accuracy for four overlapping cells.

A study on the chucking system in coaxial grinding of ferrule (페룰 동축 연삭시 척킹 시스템에 관한 연구)

  • Kim, Dong-Kil;Lee, Sang-Jo;Ahn, Geon-Jun;Kwak, Chol-Hun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.987-991
    • /
    • 2003
  • Ferrule is widely used as fiber optic connecters. In fiber-optic communications, the shape accuracy such as coaxiality and cylindricity of ferrule affects insertion loss. When coaxial grinding of ferrule supported by two pin, pin alignment and chucking accuracy are very important. In this research, the kinematic behavior of the ferrule center is investigated in the case where cone-shaped center pins and round circle holes which make contact with each other near the edge of the holes, using homeogenous coordinate transformation and numerical analysis. The obtained results are as follows: The alignment errors between center holes cause a sinusoidal displacement of ferrule. And the maximum displacement of ferrule centers increase in proportion to the center pin angle. The relationship between center pins displacement in coaxial grinding and grinding accuracy was explained.

  • PDF

Effect of Tool Approaching Path on the Shape of Cylindrical Hole in a Milling Process (공구접근 경로가 밀링 가공된 원통 구멍 형상에 미치는 영향)

  • Kim, Kwang-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.4
    • /
    • pp.50-55
    • /
    • 2004
  • Because of the development in mold industries, the geometrical form accuracy of the milled surface is getting more and more important. It has been known that the geometrical form accuracy is affected by machine conditions, cutting conditions, tool conditions and tool path and so on. Among them, the tool approaching path causes the change in material removal per tooth at the end of each machining cycle. And, this change generates the geometrical form error around the region where the tool engages the workpiece initially. So, it is impossible to eliminate the geometrical error caused by the tool approaching path. Thus, characteristics of this geometrical error are studied analytically and experimentally to minimize this region.

  • PDF

Process Design of Cold Forging for Drum Clutch with Inner Tooth Component (내 치형 드럼클러치의 냉간 단조 공정 설계)

  • Park Sang Soo;Kim Byung Min;Lee Jung Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.30-37
    • /
    • 2005
  • A drum clutch which is a main part for the automatic transmission of auto-mobiles has been manufactured by glob threading and machining. The tooth shape of the drum clutch manufactured by machining has lower dimensional accuracy than that by pressing and its machining needs the enormous cost at plant investment. Thus, this study was designed to develop cold forging process and to improve the productivity and dimensional accuracy. In this work, variables affecting dimensional accuracy were first determined, then cold forming process design according to each variables was performed by FE simulation. Optimal process was suggested on the basis of analytical results.

The Enhancements of Sub-pixel Measuring Accuracy by the Centroid Methods (Centroid Methods에 의한 Sub-pixel 측정정확도 향상)

  • 강준묵;배상호
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.15 no.2
    • /
    • pp.245-252
    • /
    • 1997
  • The development of digital camera and advancement of computer processor could simplify the acquisition and the analysis of digial image, and be the real-time processing by the digital photogrammetry. This study is about to enhancement of the image measuring accuracy by the centroid methods. We were able to determine more effective centroid measuring methods and suitable target shape as the development of analysis system and actualize semi-automatic measuring of digital image. And we can supply the weakness of non-metric camera for the geometric internal accuracy of digital image as the correct of Kodak DCS200 camera 8008s lens distortion.

  • PDF

Development of CV Joint Outer Race Ball Groove Measurement System (등속조인트 Ball Groove 측정시스템 개발에 관한 연구)

  • Park K. S.;Kim B. J.;Jang J. H.;Moon Y. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.160-163
    • /
    • 2005
  • The cute. race of CV(constant velocity) Joint is an important load-supporting automotive part, which transmits torque between the transmission gear box and driving wheel. The outer race is difficult to forge because its shape is very complicated and the required dimensional tolerances are very small. The forged CV Joint investigated in this study has six inner ball grooves requiring high operational accuracy. Therefore, the precise measurement of forged CV Joint is very important to guarantee the sound operation without noise and abnormal wear. In this study, unique in-situ measuring system designed specifically to measure the dimensional accuracy of six inner ball grooves of CV joint has been developed and implemented in shop environments. Newly developed system shows high measurement accuracy with simple operational sequence.

  • PDF