• Title/Summary/Keyword: Shape accuracy

Search Result 1,660, Processing Time 0.027 seconds

Study on the Calculation of Towing Force for LNG Bunkering Barge (LNG 벙커링 바지의 예인력 계산에 관한 연구)

  • Oh, Seung-Hoon;Jung, Jae-Hwan;Hwang, Sung-Chul;Jung, Hyun-Woo;Cho, Seok-Kyu;Jung, Dong-Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.158-161
    • /
    • 2018
  • In this paper, the towing force is calculated for the LNG bunker barge. LNG bunkering barge is being developed as an infrastructure for the bunkering of LNG(Liquefied Natural Gas), an eco-friendly energy source. In the case of the LNG bunker barge, a self-propulsion is considered through retrofit from an operating point. Therefore, the LNG bunker barge is similar to the shape of the ship as compared to a towed barge, so a rule of the towed barge overestimates the towing force. In order to improve accuracy, the calm water resistance is calculated according to the ITTC 1978 method considering the wave resistance by the Rankine source method. The added resistance in waves is calculated using the modified radiated energy method considering the shortwave correction method of NMRI. The performance of the towing resistances through the calm water resistance and the added resistance in waves was compared with rules of the towed barge.

  • PDF

A Feasibility study on the Simplified Two Source Model for Relative Electron Output Factor of Irregular Block Shape (단순화 이선원 모델을 이용한 전자선 선량율 계산 알고리듬에 관한 예비적 연구)

  • 고영은;이병용;조병철;안승도;김종훈;이상욱;최은경
    • Progress in Medical Physics
    • /
    • v.13 no.1
    • /
    • pp.21-26
    • /
    • 2002
  • A practical calculation algorithm which calculates the relative output factor(ROF) for irregular shaped electron field has been developed and evaluated the accuracy of the algorithm. The algorithm adapted two-source model, which assumes that the electron dose can be express as sum of the primary source component and the scattered component from the shielding block. Original two-source model has been modified in order to make the algorithm simpler and to reduce the number of parameters needed in the calculation, while the calculation error remains within clinical tolerance range. The primary source is assumed to have Gaussian distribution, while the scattered component follows the inverse square law. Depth and angular dependency of the primary and the scattered are ignored ROF can be calculated with three parameters such as, the effective source distance, the variance of primary source, and the scattering power of the block. The coefficients are obtained from the square shaped-block measurements and the algorithm is confirmed from the rectangular or irregular shaped-fields used in the clinic. The results showed less than 1.0 % difference between the calculation and measurements for most cases. None of cases which have bigger than 2.1 % have been found. By improving the algorithm for the aperture region which shows the largest error, the algorithm could be practically used in the clinic, since one can acquire the 1011 parameter's with minimum measurements(5∼6 measurements per cones) and generates accurate results within the clinically acceptable range.

  • PDF

Development and Evaluation of an Indirect Illumination for Tongue Image Acquisition (설 영상 획득을 위한 간접 조명 구현 및 평가)

  • Jung, Chang Jin;Kim, Keun Ho;Jang, Jun-Su;Jeon, Young Ju
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.221-228
    • /
    • 2014
  • The color and shape of the tongue reflect the physiological and clinico-pathological condition of the body. Recently, various tongue image acquisition devices have been developed for accurate diagnosis based on quantitative and objective tongue features. Since a color information is essential for tongue diagnosis, the performance of an illuminator is very important for the tongue image acquisition device. In this study, we developed an indirect illumination, which is possible to improve a homogeneity of light intensities on the tongue surface, and evaluated its performances. In order to realize the indirect illumination (II), a semi-ellipsoidal solid structure (SESS) for the light reflex was located in the system, and two high-brightness white LEDs were placed for illuminating the areas under frontal camera in the SESS. The tongue surface was illuminated by reflected light from the SESS. The light homogeneity induced by three different illuminations including the II was evaluated by calculating coefficient of variation (CV) of illuminance of five regions. The II showed less than 0.01 of CV and the direct illumination (DI) and the direct illumination with a light diffusion plate (DILDP) showed 0.16 and 0.13, respectively. The reflexed pixel ratios of tongue phantom images show 5.76%, 4.22%, 1.79% for the DI, the DILDP and the II, respectively. The homogeneity of a tongue phantom was evaluated by calculating CV of mean pixel values of six different tongue regions, and showed less than 0.06 in the II. If the II technique apply to tongue diagnosis system, it is expected to improve diagnostic accuracy in clinic.

Development of a New Lumped-Mass Stick Model using the Eigen-Properties of Structures (구조물의 동적 고유특성을 이용한 새로운 집중질량모델 개발)

  • Roh, Hwa-Sung;Youn, Ji-Man;Lee, Hu-Seok;Lee, Jong-Seh
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.19-26
    • /
    • 2012
  • For a seismic design or performance evaluation of a structure, an experimental investigation on a scale model of the structure or numerical analysis based on the finite element model is considered. Regarding the numerical analysis, a three-dimensional finite element analysis is performed if a high accuracy of the results is required, while a sensitivity or fragility analysis which uses huge seismic ground motions leads to the use of a lumped-mass stick model. The conventional modeling technique to build the lumped-mass stick model calculates the amount of the lumped mass by considering the geometric shape of the structure, like a tributary area. However, the eigenvalues of the conventional model obtained through such a calculation are normally not the same as those of the actual structure. In order to overcome such a deficiency, in this study, a new lumped mass stick model is proposed. The model is named the "frequency adaptive-lumped-mass stick model." It provides the same eigenvalues and similar dynamic responses as the actual structure. A non-prismatic column is considered as an example, and its natural frequencies as well as the dynamic performance of the new lumped model are compared to those of the full-finite element model. To investigate the damping effect on the new model, 1% to 5% of the critical damping ratio is applied to the model and the corresponding results are also compared to those of the finite element model.

Efficient Adaptive Finite Element Mesh Generation for Dynamics (동적 문제에 효율적인 적응적 유한요소망)

  • Yoon, Chongyul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.5
    • /
    • pp.385-392
    • /
    • 2013
  • The finite element method has become the most widely used method of structural analysis and recently, the method has often been applied to complex dynamic and nonlinear structural analyses problems. Even for these complex problems, where the responses are hard to predict, finite element analyses yield reliable results if appropriate element types and meshes are used. However, the dynamic and nonlinear behaviors of a structure often include large deformations in various portions of the structure and if the same mesh is used throughout the analysis, some elements may deform to shapes beyond the reliable limits; thus dynamically adapting finite element meshes are needed in order for the finite element analyses to be accurate. In addition, to satisfy the users requirement of quick real run time of finite element programs, the algorithms must be computationally efficient. This paper presents an adaptive finite element mesh generation scheme for dynamic analyses of structures that may adapt at each time step. Representative strain values are used for error estimates and combinations of the h-method(node movement) and the r-method(element division) are used for mesh refinements. A coefficient that depends on the shape of an element is used to limit overly distorted elements. A simple frame example shows the accuracy and computational efficiency of the scheme. The aim of the study is to outline the adaptive scheme and to demonstrate the potential use in general finite element analyses of dynamic and nonlinear structural problems commonly encountered.

Inundation Analysis in Urban Area Considering of Head Loss Coefficients at Surcharged Manholes (과부하 맨홀의 손실계수를 고려한 도시지역 침수해석)

  • Lee, Won;Kim, Jung Soo;Yoon, Sei Eui
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.2
    • /
    • pp.127-136
    • /
    • 2015
  • In general, XP-SWMM regards manholes as nodes, so it can not consider local head loss in surcharged manhole depending on shape and size of the manhole. That might be a reason why XP-SWMM underestimates inundated-area compared with reality. Therefore, it is necessary to study how we put the local head loss in surcharged manhole in order to simulate storm drain system with XP-SWMM. In this study, average head loss coefficients at circular and square manhole were estimated as 0.61 and 0.68 respectively through hydraulic experiments with various discharges. The estimated average head loss coefficients were put into XP-SWMM as inflow and outflow energy loss of nodes to simulate inundation area of Gunja basin. Simulated results show that not only overflow discharge amount but inundated-area increased considering the head loss coefficients. Also, inundation area with considering head loss coefficients was matched as much as 58% on real inundation area. That was more than simulated results without considering head loss coefficients as much as 18 %. Considering energy loss in surcharged manholes increases an accuracy of simulation. Therefore, the averaged head loss coefficients of this study could be used to simulate storm drain system. It was expected that the study results will be utilized as basic data for establishing the identification of the inundation risk area.

Multimodal Brain Image Registration based on Surface Distance and Surface Curvature Optimization (표면거리 및 표면곡률 최적화 기반 다중모달리티 뇌영상 정합)

  • Park Ji-Young;Choi Yoo-Joo;Kim Min-Jeong;Tae Woo-Suk;Hong Seung-Bong;Kim Myoung-Hee
    • The KIPS Transactions:PartA
    • /
    • v.11A no.5
    • /
    • pp.391-400
    • /
    • 2004
  • Within multimodal medical image registration techniques, which correlate different images and Provide integrated information, surface registration methods generally minimize the surface distance between two modalities. However, the features of two modalities acquired from one subject are similar. So, it can improve the accuracy of registration result to match two images based on optimization of both surface distance and shape feature. This research proposes a registration method which optimizes surface distance and surface curvature of two brain modalities. The registration process has two steps. First, surface information is extracted from the reference images and the test images. Next, the optimization process is performed. In the former step, the surface boundaries of regions of interest are extracted from the two modalities. And for the boundary of reference volume image, distance map and curvature map are generated. In the optimization step, a transformation minimizing both surface distance and surface curvature difference is determined by a cost function referring to the distance map and curvature map. The applying of the result transformation makes test volume be registered to reference volume. The suggested cost function makes possible a more robust and accurate registration result than that of the cost function using the surface distance only. Also, this research provides an efficient means for image analysis through volume visualization of the registration result.

A Comparative Study on Power Tool Manufacturers' Products Spec. and Design Development Features - By the Case Study on BOSCH, BLACK&DECKER and KEYANG Electrics- (전동공구 회사의 제품사양별 디자인개발특성 비교연구 -보슈(BOSCH), 블랙앤데커(BLACK&DECKER), 계양전기 사례를 중심으로 -)

  • 채승진
    • Archives of design research
    • /
    • v.17 no.1
    • /
    • pp.383-392
    • /
    • 2004
  • The power tools is the product using working power generated by electric motor. Many companies are manufacturing numerous devices. Main features of tools are included various assembled products, small, light and solid and durable enough to match several standards. Fundamental requirements for the product is excellent performance and convenience for use. The quality of them depends on the equipped motor'(s) capability, accuracy of gear and endurance against worn-out. By adapting the state-of-the-art parts, they could be used in the place from home to heavy industry broadly. They can be classified electronic drills, grinders, saws and sanders families for the household appliances. For industrial tools, bore drill, grinder, polisher, and driver drill are classified as special and high priced group. This study presents the strategy of power tool development of BOSCH, BLACK&DECKER and KEYANG. Their products were analyzed in terms of product line and product mix concept. Then they are examined by design elements, such as color, shape and material for housing. As an analysis method, the image scale parameter and criteria were applied to each company's product.

  • PDF

An Enhanced Density and Grid based Spatial Clustering Algorithm for Large Spatial Database (대용량 공간데이터베이스를 위한 확장된 밀도-격자 기반의 공간 클러스터링 알고리즘)

  • Gao, Song;Kim, Ho-Seok;Xia, Ying;Kim, Gyoung-Bae;Bae, Hae-Young
    • The KIPS Transactions:PartD
    • /
    • v.13D no.5 s.108
    • /
    • pp.633-640
    • /
    • 2006
  • Spatial clustering, which groups similar objects based on their distance, connectivity, or their relative density in space, is an important component of spatial data mining. Density-based and grid-based clustering are two main clustering approaches. The former is famous for its capability of discovering clusters of various shapes and eliminating noises, while the latter is well known for its high speed. Clustering large data sets has always been a serious challenge for clustering algorithms, because huge data set would make the clustering process extremely costly. In this paper, we propose an enhanced Density-Grid based Clustering algorithm for Large spatial database by setting a default number of intervals and removing the outliers effectively with the help of a proper measurement to identify areas of high density in the input data space. We use a density threshold DT to recognize dense cells before neighbor dense cells are combined to form clusters. When proposed algorithm is performed on large dataset, a proper granularity of each dimension in data space and a density threshold for recognizing dense areas can improve the performance of this algorithm. We combine grid-based and density-based methods together to not only increase the efficiency but also find clusters with arbitrary shape. Synthetic datasets are used for experimental evaluation which shows that proposed method has high performance and accuracy in the experiments.

Automatic Extraction of Roof Components from LiDAR Data Based on Octree Segmentation (LiDAR 데이터를 이용한 옥트리 분할 기반의 지붕요소 자동추출)

  • Song, Nak-Hyeon;Cho, Hong-Beom;Cho, Woo-Sug;Shin, Sung-Woong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.4
    • /
    • pp.327-336
    • /
    • 2007
  • The 3D building modeling is one of crucial components in building 3D geospatial information. The existing methods for 3D building modeling depend mainly on manual photogrammetric processes by stereoplotter compiler, which indeed take great amount of time and efforts. In addition, some automatic methods that were proposed in research papers and experimental trials have limitations of describing the details of buildings with lack of geometric accuracy. It is essential in automatic fashion that the boundary and shape of buildings should be drawn effortlessly by a sophisticated algorithm. In recent years, airborne LiDAR data representing earth surface in 3D has been utilized in many different fields. However, it is still in technical difficulties for clean and correct boundary extraction without human intervention. The usage of airborne LiDAR data will be much feasible to reconstruct the roof tops of buildings whose boundary lines could be taken out from existing digital maps. The paper proposed a method to reconstruct the roof tops of buildings using airborne LiDAR data with building boundary lines from digital map. The primary process is to perform octree-based segmentation to airborne LiDAR data recursively in 3D space till there are no more airborne LiDAR points to be segmented. Once the octree-based segmentation has been completed, each segmented patch is thereafter merged based on geometric spatial characteristics. The experimental results showed that the proposed method were capable of extracting various building roof components such as plane, gable, polyhedric and curved surface.