• Title/Summary/Keyword: Shape Memory Alloy(SMA) actuator

Search Result 91, Processing Time 0.022 seconds

Thermal Fatigue Degradation Behavior of Ni-Ti Shape Memory Alloy (Ti-Ni 형상기억합금의 열피로열화 거동)

  • 박영철;조용배;오세욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.2913-2921
    • /
    • 1994
  • In SMA(shape memory alloy), the degradation by fatigue is one of the most important problems to be overcome, when SMA is used for robot-actuator material. The actuator is operated repeatitively for long time and its repeating operation develops the fatigue degradation of SMA. The fatigue degradation changes the transformation temperature and deformation behavior and results in inaccurate operation control of robot. Accordingly, the changing behavior of transformation temperature and deformation which results from repeating operation is to be investigated in advance and the scheme to resolve those problems have to be made for the design of actuator. In this study, the fatigue tests were carried out on SMA specimens prepared to have different condition of aging time and pre-strain with the direct-current heating-cooling method, which was a general method of operation in robot actuators. The behavior of transformation temperature and deformation were examined and analyzed in each specimen and the study was performed to establish the optimistic manufacturing condition of SMA against the fatigue degradation.

A study on the Development of Bidirectional Acutator using NiTi Shape Memory Alloy (NiTi 형상기억합금을 이용한 차동식 액츄에이터 개발에 관한 연구)

  • Jeong, S. H.;Kim, K. S.;Jang, W. Y.;Kim, H. U.;Cha, K. R.;Song, S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.723-726
    • /
    • 2002
  • In the recent years, as the research and the development of micro and precision machinery become active, the interest of micro actuators using SMA(Shape Memory Alloy) has been increased. The dynamic characteristic analysis of SMA is necessary for actuator application and many common researches report the material characteristics of SMA sufficiently. However, the research of dynamic characteristics is very deficient. In this paper, the helical spring is fabricated with NiTi SMA wire of high resistivity The farce, response speed, temperature, and displacement are measured by digital force gauge, infrared thermometer, and laser displacement sensor so that the dynamic characteristics of this SMA actuator is analyzed.

  • PDF

A Study on Performance-Analysis and Control of the Active Catheter (작동형 내시경의 성능 해석 및 제어에 관한 연구)

  • Cheong, J.P.;Kim, J.H.;Lee, J.M.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.556-561
    • /
    • 2000
  • This paper deals with the control of an active bending actuator fur a catheter. The bending actuator with 40mm in length utilizes three zigzag SMA (shape memory alloy) springs which are equally located in the circumference between inner $({\phi}2.5 mm)$ and outer $({\phi}3.0mm)$ tube. It is purposed on realization of desired bending angle $(90^{\circ})$ and direction $(360^{\circ})$. It is also installed in front of the catheter and used to guide a path at extremely bent or branched blood vessel. The performance-analysis of the bending actuator are investigated fur the purpose of optimizing the control of the bending actuator. The analog joy stick is used to command a bending angle and direction for the fast and accurate response. According to the commands of the joy stick, tensile force of each SMA spring is computed and obtained by controlling the temperature of each SMA spring using PWM (pulse width modulation) of supplied electric power.

  • PDF

The Machining Characteristics of Groove Patterning for Nitinol Shape Memory Alloy Using Electrochemical Machining (전해가공을 이용한 Nitinol 형상기억합금의 그루브 패턴 가공특성에 관한 연구)

  • Shin, Tae-Hee;Kim, Baek-Kyoum;Baek, Seung-Yub;Lee, Eun-Sang
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.551-557
    • /
    • 2009
  • A development of smart materials is becoming a prominent issue on present industries. A smart material, included in functions, is needed for micro fabrication. A shape memory alloy(SMA) in a smart material is best known material. Ni-Ti alloy, composed of nikel and titanium is one of the best shape memory alloy(SMA). Nitinol SMA is used for a lot of high tech industry such as aero space, medical device, micro actuator, sensor system. However, Ni-Ti SMA is difficult to process to make a shape and fabrications as traditional machining process. Because nitinol SMA, that is contained nikel content more than titanium content, has similar physical characteristics of titanium. In this paper, the characteristics of ECM grooving process for nitinol SMA are investigated by experiments. The experiments in this study are progressed for power, gap distance and machining time. The characteristics are found each part. Fine shape in work piece can be found on conditions; current 6A, duty factor 50%, gap distance 15%, gap distance $15{\mu}m$, machining time 10min.

  • PDF

Design and control of a proof-of-concept active jet engine intake using shape memory alloy actuators

  • Song, Gangbing;Ma, Ning;Li, Luyu;Penney, Nick;Barr, Todd;Lee, Ho-Jun;Arnold, Steve
    • Smart Structures and Systems
    • /
    • v.7 no.1
    • /
    • pp.1-13
    • /
    • 2011
  • It has been shown in the literature that active adjustment of the intake area of a jet engine has potential to improve its fuel efficiency. This paper presents the design and control of a novel proof-of-concept active jet engine intake using Nickel-Titanium (Ni-Ti or Nitinol) shape memory alloy (SMA) wire actuators. The Nitinol SMA material is used in this research due to its advantages of high power-to-weight ratio and electrical resistive actuation. The Nitinol SMA material can be fabricated into a variety of shapes, such as strips, foils, rods and wires. In this paper, SMA wires are used due to its ability to generate a large strain: up to 6% for repeated operations. The proposed proof-of-concept engine intake employs overlapping leaves in a concentric configuration. Each leaf is mounted on a supporting bar than can rotate. The supporting bars are actuated by an SMA wire actuator in a ring configuration. Electrical resistive heating is used to actuate the SMA wire actuator and rotate the supporting bars. To enable feedback control, a laser range sensor is used to detect the movement of a leaf and therefore the radius of the intake area. Due to the hysteresis, an inherent nonlinear phenomenon associated with SMAs, a nonlinear robust controller is used to control the SMA actuators. The control design uses the sliding-mode approach and can compensate the nonlinearities associated with the SMA actuator. A proof-of-concept model is fabricated and its feedback control experiments show that the intake area can be precisely controlled using the SMA wire actuator and has the ability to reduce the area up to 25%. The experiments demonstrate the feasibility of engine intake area control using an SMA wire actuator under the proposed design.

A study on the Improvement of the Performance of Biodirectional NITINOL Actuator (NITINOL을 이용한 차동식 액츄에이터의 동작성능 향상을 위한 연구)

  • Jung, Sang-Hwa;Kim, Hyun-Wook;Cha, Kyung-Rae;Song, Seok;Shin, Byung-Soo;Lee, Kyung-Hyung
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1577-1580
    • /
    • 2003
  • In the recent years, as the research and the development of micro and precision machinery become active, the interest of micro actuators using SMA(Shape Memory Alloy) has been increased. The dynamic characteristic analysis of SMA is necessary for actuator application and many common researches report the material characteristics of SMA sufficiently. However, the research on dynamic characteristics is very deficient. In this paper, the helical spring are fabricated with NiTi SMA wire of high resistivity. The force, response speed, temperature, and displacement are measured by digital force gauge, infrared thermometer, and laser displacement sensor so that the dynamic characteristics of this SMA is analyzed. Also, bidirectional actuator was fabricated and experimented for its performance.

  • PDF

Modified sigmoid based model and experimental analysis of shape memory alloy spring as variable stiffness actuator

  • Sul, Bhagoji B.;Dhanalakshmi, K.
    • Smart Structures and Systems
    • /
    • v.24 no.3
    • /
    • pp.361-377
    • /
    • 2019
  • The stiffness of shape memory alloy (SMA) spring while in actuation is represented by an empirical model that is derived from the logistic differential equation. This model correlates the stiffness to the alloy temperature and the functionality of SMA spring as active variable stiffness actuator (VSA) is analyzed based on factors that are the input conditions (activation current, duty cycle and excitation frequency) and operating conditions (pre-stress and mechanical connection). The model parameters are estimated by adopting the nonlinear least square method, henceforth, the model is validated experimentally. The average correlation factor of 0.95 between the model response and experimental results validates the proposed model. In furtherance, the justification is augmented from the comparison with existing stiffness models (logistic curve model and polynomial model). The important distinction from several observations regarding the comparison of the model prediction with the experimental states that it is more superior, flexible and adaptable than the existing. The nature of stiffness variation in the SMA spring is assessed also from the Dynamic Mechanical Thermal Analysis (DMTA), which as well proves the proposal. This model advances the ability to use SMA integrated mechanism for enhanced variable stiffness actuation. The investigation proves that the stiffness of SMA spring may be altered under controlled conditions.

Analyses of Behaviors of a Shape-Memory-Alloy Torque Tube Actuator (형상기억합금 비틀림 튜브 작동기의 거동 해석)

  • Kim, Jun-Hyoung;Kim, Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1083-1089
    • /
    • 2010
  • Shape memory alloys (SMAs) are smart materials. The unique characteristics of SMAs enable the production of large force and displacement. Hence, SMAs can be used in many applications such as in actuators and active structural acoustic controllers; the SMAs can also be used for dynamic tuning and shape control. A SMA torque tube actuator consisting of SMA tubes and superelastic springs is proposed, and the behaviors of the actuator are investigated. From the results of heat transfer analysis, it is proved that the SMA torque tube actuator with both resistive heating of SMA itself and a separate conventional heating rod in the tube core has good performance. The behavior of an actuator system was analyzed by performing a contact analysis, and the twisting motion was noticed when checking the actuation. 3D SMA nonlinear constitutive equations were formulated numerically and implemented by performing a nonlinear analysis by using Abaqus UMAT.

The Effect of Pre-strain on Cyclic Deformation Characteristic of Ti-Ni Alloy (Ti-Ni합금의 반복변형특성에 미치는 pre-strain의 효과)

  • 박영철;조용배;허선철
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.101-110
    • /
    • 1995
  • In SMA(Shape Memory Alloy), the degradation by fatigue is one of the most important problems to be overcome, when SMA is used for robot-actuator materials. The actuator is operated repetitively for long time and its repeating operation develops the fatigue degradation of SMA. The fatigue degradation changes the transformation temperature and deformation behavior and results in inaccurate operation and deformation which results form repeating operation is to be investigated in advance and the scheme to resolve those problems have to be made for the design of actuator. In this paper, for the improvement of the fatigue degradation by repetive movement and better control of the correct movement by the stability of martensite transformation in the development of Robots actuator, Pre-strain(0, 1.5, 5, 8%) are loaded in the specimens and fatigue testing were carried out by the method of heating and cooling in direct condition. From the results of these experiments, the effect on pre-strain which affect the transformation characteristic and fatigue degradation phenomena were correctly investigated.

  • PDF

Thermomechanical Behaviors of Shape Memory Alloy Thin Films and Their Application

  • Roh, Jin-Ho;Lee, In
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.91-98
    • /
    • 2006
  • The thermomechanical behaviors of SMA thin film actuator and their application are investigated. The numerical algorithm of the 2-D SMA thermomechanical constitutive equation is developed and implemented into the ABAQUS finite element program by using the user defined material (UMAT) subroutine. To verify the numerical algorithm of SMAs, the results are compared with experimental data. For the application of SMA thin film actuator, the methodology to maintain the precise configuration of inflatable membrane structure is demonstrated.