• Title/Summary/Keyword: Shape Generation Technique

Search Result 105, Processing Time 0.028 seconds

Accuracy Comparison Between Image-based 3D Reconstruction Technique and Terrestrial LiDAR for As-built BIM of Outdoor Structures

  • Lee, Jisang;Hong, Seunghwan;Cho, Hanjin;Park, Ilsuk;Cho, Hyoungsig;Sohn, Hong-Gyoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.6
    • /
    • pp.557-567
    • /
    • 2015
  • With the increasing demands of 3D spatial information in urban environment, the importance of point clouds generation techniques have been increased. In particular, for as-built BIM, the point clouds with the high accuracy and density is required to describe the detail information of building components. Since the terrestrial LiDAR has high performance in terms of accuracy and point density, it has been widely used for as-built 3D modelling. However, the high cost of devices is obstacle for general uses, and the image-based 3D reconstruction technique is being a new attraction as an alternative solution. This paper compares the image-based 3D reconstruction technique and the terrestrial LiDAR in point of establishing the as-built BIM of outdoor structures. The point clouds generated from the image-based 3D reconstruction technique could roughly present the 3D shape of a building, but could not precisely express detail information, such as windows, doors and a roof of building. There were 13.2~28.9 cm of RMSE between the terrestrial LiDAR scanning data and the point clouds, which generated from smartphone and DSLR camera images. In conclusion, the results demonstrate that the image-based 3D reconstruction can be used in drawing building footprint and wireframe, and the terrestrial LiDAR is suitable for detail 3D outdoor modeling.

Trimming Line Design using Incremental Development Method and Finite Element Inverse Method (점진 전개기법 및 유한요소 역해석법을 이용한 자동차 패널 트리밍 라인 설계)

  • Chung, W.J.;Park, C.D.;Song, Y.J.;Oh, S.W.
    • Transactions of Materials Processing
    • /
    • v.15 no.6 s.87
    • /
    • pp.445-452
    • /
    • 2006
  • In most of automobile body panel manufacturing, trimming process is generally performed before flanging. To find feasible trimming line is crucial in obtaining accurate edge profile after flanging. Section-based method develops blank along manually chosen section planes and find trimming line by generating loop of end points. This method suffers from inaccurate results of edge profile. On the other hand, simulation-based method can produce more accurate trimming line by iterative strategy. In this study, new fast simulation-based method to find feasible trimming line is proposed. Finite element inverse method is used to analyze the flanging process because final shape after flanging can be explicitly defined and most of strain paths are simple in flanging. In utilizing finite element inverse method, the main obstacle is the initial guess generation for general mesh. Robust initial guess generation method is developed to handle genera] mesh with very different size and undercut. The new method develops final triangular mesh incrementally onto the drawing tool surface. Also in order to remedy mesh distortion during development, energy minimization technique is utilized. Trimming line is extracted from the outer boundary after finite element inverse method simulation. This method has many advantages since trimming line can be obtained in the early design stage. The developed method is verified by shrink/stretch flange forming and successfully applied to the complex industrial applications such as door outer flanging process.

Panorama Background Generation and Object Tracking using Pan-Tilt-Zoom Camera (Pan-Tilt-Zoom 카메라를 이용한 파노라마 배경 생성과 객체 추적)

  • Paek, In-Ho;Im, Jae-Hyun;Park, Kyoung-Ju;Paik, Jun-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.3
    • /
    • pp.55-63
    • /
    • 2008
  • This paper presents a panorama background generation and object tracking technique using a Pan-Tilt-Zoom camera. The proposed method estimates local motion vectors rapidly using phase correlation matching at the prespecified multiple local regions, and it makes minimized estimation error by vector quantization. We obtain the required image patches, by estimating the overlapped region using local motion vectors, we can then project the images to cylinder and realign the images to make the panoramic image. The object tracking is performed by extracting object's motion and by separating foreground from input image using background subtraction. The proposed PTZ-based object tracking method can efficiently generated a stable panorama background, which covers up to 360 degree FOV The proposed algorithm is designed for real-time implementation and it can be applied to many commercial applications such as object shape detection and face recognition in various surveillance video systems.

Control of Size and Morphology of Particles Using CO2 Laser in a Flame (화염증 CO2 Laser를 이용한 입자의 크기 및 형상 제어)

  • Lee, Donggeun;Lee, Seonjae;Choi, Mansoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1379-1389
    • /
    • 1999
  • A new technique for control of size and shape of flame-made particles is Introduced. The characteristic sintering time can be controlled Independently of collision time by heating the particles with irradiation of laser because the sintering time strongly depends on temperature. A coflow oxy-hydrogen diffusion flame burner was used for $SiCl_4$ conversion to silica particle. Nanometer sized aggregates irradiated by a high power CW $CO_2$ laser beam were rapidly heated up to high temperatures and then were sintered to approach volume-equivalent spheres. The sphere collides much slower than the aggregate, which results in reduction of sizes of particles maintaining spherical shape. Light scattering of Ar ion laser and TEM observation using a local sampling device were used to confirm the above effects. When the $CO_2$ laser was irradiated at low position from the burner surface, particle generation due to gas absorption of laser beam occurred and thus scattering intensity increased with $CO_2$ laser power. At high irradiation position, scattering intensity decreased with $CO_2$ laser power and TEM image showed a clear mark of evaporation and recondensation of particles for high $CO_2$ laser power. When the laser was irradiated between the above two positions where small aggregates exist, average size of spherical particles obviously decreased to 58% of those without $CO_2$ laser irradiation with the spherical shape. Even for increased carrier gas flow rate by a factor of three, TEM photograph also revealed considerable reduction of particle size.

Development of Three-Dimensional Deformable Flexible Printed Circuit Boards Using Ag Flake-Based Conductors and Thermoplastic Polyamide Substrates

  • Aram Lee;Minji Kang;Do Young Kim;Hee Yoon Jang;Ji-Won Park;Tae-Wook Kim;Jae-Min Hong;Seoung-Ki Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.420-426
    • /
    • 2024
  • This study proposes an innovative methodology for developing flexible printed circuit boards (FPCBs) capable of conforming to three-dimensional shapes, meeting the increasing demand for electronic circuits in diverse and complex product designs. By integrating a traditional flat plate-based fabrication process with a subsequent three-dimensional thermal deformation technique, we have successfully demonstrated an FPCB that maintains stable electrical characteristics despite significant shape deformations. Using a modified polyimide substrate along with Ag flake-based conductive ink, we identified optimized process variables that enable substrate thermal deformation at lower temperatures (~130℃) and enhance the stretchability of the conductive ink (ε ~30%). The application of this novel FPCB in a prototype 3D-shaped sensor device, incorporating photosensors and temperature sensors, illustrates its potential for creating multifunctional, shape-adaptable electronic devices. The sensor can detect external light sources and measure ambient temperature, demonstrating stable operation even after transitioning from a planar to a three-dimensional configuration. This research lays the foundation for next-generation FPCBs that can be seamlessly integrated into various products, ushering in a new era of electronic device design and functionality.

Evaluation of Clustered Building Solid Model Automatic Generation Technique and Model Editing Function Based on Point Cloud Data (포인트 클라우드 데이터 기반 군집형 건물 솔리드 모델 자동 생성 기법과 모델 편집 기능 평가)

  • Kim, Han-gyeol;Lim, Pyung-Chae;Hwang, Yunhyuk;Kim, Dong Ha;Kim, Taejung;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1527-1543
    • /
    • 2021
  • In this paper, we explore the applicability and utility of a technology that generating clustered solid building models based on point cloud automatically by applying it to various data. In order to improve the quality of the model of insufficient quality due to the limitations of the automatic building modeling technology, we develop the building shape modification and texture correction technology and confirmed the resultsthrough experiments. In order to explore the applicability of automatic building model generation technology, we experimented using point cloud and LiDAR (Light Detection and Ranging) data generated based on UAV, and applied building shape modification and texture correction technology to the automatically generated building model. Then, experiments were performed to improve the quality of the model. Through this, the applicability of the point cloud data-based automatic clustered solid building model generation technology and the effectiveness of the model quality improvement technology were confirmed. Compared to the existing building modeling technology, our technology greatly reduces costs such as manpower and time and is expected to have strengths in the management of modeling results.

Massive Parallel Processing Algorithm for Semiconductor Process Simulation (반도체 공정 시뮬레이션을 위한 초고속 병렬 연산 알고리즘)

  • 이제희;반용찬;원태영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.3
    • /
    • pp.48-58
    • /
    • 1999
  • In this paper, a new parallel computation method, which fully utilize the parallel processors both in mesh generation and FEM calculation for 2D/3D process simulation, is presented. High performance parallel FEM and parallel linear algebra solving technique was showed that excessive computational requirement of memory size and CPU time for the three-dimensional simulation could be treated successively. Our parallelized numerical solver successfully interpreted the transient enhanced diffusion (TED) phenomena of dopant diffusion and irregular shape of R-LOCOS within 15 minutes. Monte Carlo technique requires excessive computational requirement of CPU time. Therefore high performance parallel solving technique were employed to our cascade sputter simulation. The simulation results of Our sputter simulator allowed the calculation time of 520 sec and speedup of 25 using 30 processors. We found the optimized number of ion injection of our MC sputter simulation is 30,000.

  • PDF

Research about pulse diagnostic technique out of "Nan Jing hoeju jeonjung" ("난경회주전정(難經滙注箋正)"중(中) 맥진(脈診)에 관한 연구(硏究))

  • Park, Keun-Jung;Yoon, Chang-Yeol
    • Journal of Haehwa Medicine
    • /
    • v.15 no.2
    • /
    • pp.39-52
    • /
    • 2006
  • We came to the conclusion as follows from the research about pulse diagnostic technique (脈診) out of "Nan Jinghoeju jeonjung" (難經滙注箋正). 1. "Nan Jing" is practical medical book for clinician and holds different opinions about three portions and nine takings(三部九候脈法) from Huang Di Nei Jing's Taking the pulse of Bu Jung Chim Chon Kwan Chuk((浮中沈 寸關尺) is a quite creative means which has been a important role to future generation. 2. We pointed the differences between western medical science and traditional medical science. And can explain the pulse in western medicine divided from twelve channels of Oriental Medicine. We can explain special connection between heart and lungs using the theory of systemic & pulmonary circulation in western medicine. And this can be a basement of Lung controls every pulse theory in oriental medicine. 3. We have negative assertion about viewing the human body using theory of Yin and Yang-Five Elements. And have poor opinion of explaining about the matching internal organs to Chon Kwan Chuk using the theory of Yin and Yang-Five Elements. 4. We pointed out the mistake that Porak & Sang hwa act for heart. We took pulses considering heart is a real actual internal organ as others. 5. We denied the theory of Man's Chuk pulse is always weak(男子尺脈恒弱) & Woman's Chuk pulse is always strong(女子尺脈恒盛). The physical form of man and woman is not different from each other considering their inheritances from forefather & same shape of organs. So, we cannot insist on the theory.

  • PDF

Water droplet generation technique for 3D water drop sculptures (3차원 물방울 조각 생성장치의 구현을 위한 물방울 생성기법)

  • Lin, Long-Chun;Park, Yeon-yong;Jung, Moon Ryul
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.143-152
    • /
    • 2019
  • This paper presents two new techniques for solving the two problems of the water curtain: 'shape distortion' caused by gravity and 'resolution degradation' caused by fine satellite droplets around the shape. In the first method, when the user converts a three-dimensional model to a vertical sequence of slices, the slices are evenly spaced. The method is to adjust the time points at which the equi-distance slices are created by the nozzle array. In this method, even if the velocity of a water drop increases with time by gravity, the water drop slices maintain the equal interval at the moment of forming the whole shape, thereby preventing distortion. The second method is called the minimum time interval technique. The minimum time interval is the time between the open command of a nozzle and the next open command of the nozzle, so that consecutive water drops are clearly created without satellite drops. When the user converts a three-dimensional model to a sequence of slices, the slices are defined as close as possible, not evenly spaced, considering the minimum time interval of consecutive drops. The slices are arranged in short intervals in the top area of the shape, and the slices are arranged in long intervals in the bottom area of the shape. The minimum time interval is pre-determined by an experiment, and consists of the time from the open command of the nozzle to the time at which the nozzle is fully open, and the time in which the fully open state is maintained, and the time from the close command to the time at which the nozzle is fully closed. The second method produces water drop sculptures with higher resolution than does the first method.

Methodology of Shape Design for Component Using Optimal Design System (최적설계 시스템을 이용한 부품에 대한 형상설계 방법론)

  • Lee, Joon-Seong;Cho, Seong-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.672-679
    • /
    • 2018
  • This paper describes a methodology for shape design using an optimal design system, whereas generally a three dimensional analysis is required for such designs. An automatic finite element mesh generation technique, which is based on fuzzy knowledge processing and computational geometry techniques, is incorporated into the system, together with a commercial FE analysis code and a commercial solid modeler. Also, with the aid of multilayer neural networks, the present system allows us to automatically obtain a design window, in which a number of satisfactory design solutions exist in a multi-dimensional design parameter space. The developed optimal design system is successfully applied to evaluate the structures that are used. This study used a stress gauge to measure the maximum stress affecting the parts of the side housing bracket which are most vulnerable to cracking. Thereafter, we used a tool to interpret the maximum stress value, while maintaining the same stress as that exerted on the spot. Furthermore, a stress analysis was performed with the typical shape maintained intact, SM490 used for the material and the minimizing weight safety coefficient set to 3, while keeping the maximum stress the same as or smaller than the allowable stress. In this paper, a side housing bracket with a comparably simple structure for 36 tons was optimized, however if the method developed in this study were applied to side housing brackets of different classes (tons), their quality would be greatly improved.