• Title/Summary/Keyword: Shape Change

Search Result 2,975, Processing Time 0.028 seconds

Non-steady Ideal Forming in Plane Strain (평면 변형 하에서의 비정상 이상 공정 이론)

  • ;;Owen Richmond
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.66-69
    • /
    • 2002
  • In the ideal forming theory(1), which has been deviously developed as a direct method for optimizing forming process, material elements are required to deform following the minimum plastic work path (or the proportional true strain path). Besides the general theory(2,3), specific ideal forming theories have been developed for membrane sheet forming(4) as well as two-dimensional steady bulk forming(5-7). In this work, the ideal forming theory was successfully applied for non-steady bulk forming under the plane strain condition. Here, the shape change complying with the minimum plastic work path, was effectively described by developing a numerical code based on the characteristic method. Numerical results obtained for a specific industrial part also include the optimum pre-forming shape and its evolving shape change to the final shape as well as the boundary traction history.

  • PDF

Active shape change of an SMA hybrid composite plate

  • Daghia, Federica;Inman, Daniel J.;Ubertini, Francesco;Viola, Erasmo
    • Smart Structures and Systems
    • /
    • v.6 no.2
    • /
    • pp.91-100
    • /
    • 2010
  • An experimental study was carried out to investigate the shape control of plates via embedded shape memory alloy (SMA) wires. An extensive body of literature proposes the use of SMA wires to actively modify the shape or stiffness of a structure; in most cases, however, the study focuses on modeling and little experimental data is available. In this work, a simple proof of concept specimen was built by attaching four prestrained SMA wires to one side of a carbon fiber laminate plate strip. The specimen was clamped at one end and tested in an environmental chamber, measuring the tip displacement and the SMA temperature. At heating, actuation of the SMA wires bends the plate; at cooling deformation is partially recovered. The specimen was actuated a few times between two fixed temperatures $T_c$ and $T_h$, whereas in the last actuation a temperature $T_f$ > $T_h$ was reached. Contrary to most model predictions, in the first actuation the transformation temperatures are significantly higher than in the following cycles, which are stable. Moreover, if the temperature $T_h$ is exceeded, two separate actuations occur during heating: the first follows the path of the stable cycles; the second, starting at $T_h$, is similar to the first cycle. An interpretation of the phenomenon is given using some differential scanning calorimeter (DSC) measurements. The observed behavior emphasizes the need to build a more comprehensive constitutive model able to include these effects.

A Study on Hand Shape Recognition using Edge Orientation Histogram and PCA (에지 방향성 히스토그램과 주성분 분석을 이용한 손 형상 인식에 관한 연구)

  • Kim, Jong-Min;Kang, Myung-A
    • Journal of Digital Contents Society
    • /
    • v.10 no.2
    • /
    • pp.319-326
    • /
    • 2009
  • In this paper, we present an algorithm which recognize hand shape in real time using only image without adhering separate sensor. Hand recognizes using edge orientation histogram, which comes under a constant quantity of 2D appearances because hand shape is intricate. This method suit hand pose recognition in real time because it extracts hand space accurately, has little computation quantity, and is less sensitive to lighting change using color information in complicated background. Method which reduces recognition error using principal component analysis(PCA) method to can recognize through hand shape presentation direction change is explained. A case that hand shape changes by turning 3D also by using this method is possible to recognize. Human interface system manufacture technique, which controls a home electric appliance or game using, suggested method at experience could be applied.

  • PDF

Platelet Shape Changes and Cytoskeleton Dynamics as Novel Therapeutic Targets for Anti-Thrombotic Drugs

  • Shin, Eun-Kyung;Park, Hanseul;Noh, Ji-Yoon;Lim, Kyung-Min;Chung, Jin-Ho
    • Biomolecules & Therapeutics
    • /
    • v.25 no.3
    • /
    • pp.223-230
    • /
    • 2017
  • Platelets play an essential role in hemostasis through aggregation and adhesion to vascular injury sites but their unnecessary activation can often lead to thrombotic diseases. Upon exposure to physical or biochemical stimuli, remarkable platelet shape changes precede aggregation or adhesion. Platelets shape changes facilitate the formation and adhesion of platelet aggregates, but are readily reversible in contrast to the irrevocable characteristics of aggregation and adhesion. In this dynamic phenomenon, complex molecular signaling pathways and a host of diverse cytoskeleton proteins are involved. Platelet shape change is easily primed by diverse pro-thrombotic xenobiotics and stimuli, and its inhibition can modulate thrombosis, which can ultimately contribute to the development or prevention of thrombotic diseases. In this review, we discussed the current knowledge on the mechanisms of platelet shape change and also pathological implications and therapeutic opportunities for regulating the related cytoskeleton dynamics.

Shape Ellipticity Dependence of Exciton Fine Levels and Optical Nonlinearities in CdSe and CdTe Nanocrystal Quantum Dots

  • Yang, Hanyi;Kyhm, Kwangseuk
    • Current Optics and Photonics
    • /
    • v.3 no.2
    • /
    • pp.143-149
    • /
    • 2019
  • Shape ellipticity dependence of the exciton fine energy levels in CdTe and CdSe nanocrystal quantum dots were compared theoretically by considering the crystal structure and the Coulomb interaction of an electron and a hole. While quantum dot ellipticity changes from an oblate to prolate quantum dot via spherical shape, both the fine energy levels and the dipole moment in wurtzite structure of a CdSe quantum dot change linearly for ellipticity. In contrast, CdTe quantum dots were found to show a level crossing between the bright and dark exciton states with a significant change of the dipole moment due to the cubic structure. Shape ellipticity dependence of the optical nonlinearities in CdTe and CdSe nanocrystal quantum dots was also calculated by using semiconductor Bloch equations. For a spherical shape quantum dot, only $1^L$ dominates the optical nonlinearities in a CdSe quantum dot, but both $1^U$ and $0^U$ contribute in a CdTe quantum dot. As excitation pulse area becomes strong (${\sim}{\pi}$), the optical nonlinearities of both CdSe and CdTe quantum dots are mainly governed by absorption saturation. However, in the case of a prolate CdTe quantum dot, the real part of the nonlinear refractive index becomes relatively significant.

Numerical Analysis of Supercavitation according to Shape Change of the Two-dimensional Submerged Body (2차원 몰수체의 형상 변화에 따른 초월공동 수치해석)

  • Park, Hyun-Ji;Kim, Ji-Hye;Ahn, Byoung-Kwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • A cavitator plays an important role to generate the supercavity. Most previous numerical and experimental studies have been focused on the presence of cavitators alone. However, the body behind the cavitator causes a change in the wake flow and hence it affects generation and growth of the supercavity. In this paper, we present a boundary elementary method based on a potential flow analysis, and calculate characteristics of the supercavity formation depending on the change of the body shape of two-dimensional submerged objects. Various parameters such as cone angle of the cavitator, length of the forehead and diameter of the body are considered. The results show that the longer the forepart length, the longer the cavity is created under the same conditions, and also the change in the diameter of the body is the most influential factor on the growth of the supercavity. As a result, we suggest that it is necessary to carefully consider the influence of the body shape during the initial design stage of the supercavitating underwater vehicle.

A promising form-stable phase change material prepared using cost effective Jute stick Biochar as the matrix of stearic acid for thermal energy storage (황마 바이오차를 사용한 에너지 저장용 상변화 물질의 제조 및 성능평가에 관한 연구)

  • Adnin, Raihana Jannat;Mandal, Soumen;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.169-170
    • /
    • 2022
  • Due to the higher use of nonrenewable fossil fuel energy, environment friendly sustainable energy from waste materials is attracting attention of the researchers. Considering that, jute stick (JS) biochar has been considered for this study for ecofriendly and sustainable thermal energy storage application. Waste jute sticks (JS), which are being mainly used as a fuel for cooking purpose, have been pyrolyzed to produce porous biochar and have been used for shape stabilization of stearic acid (SA) as phase change material (PCM). SA at 1:1 ratio has been incorporated into the activated JS biochar to concoct shape-stabilized phase change composite (SAJS). The SAJS has been evaluated by different techniques such as Fourier transform-infrared spectroscope (FT-IR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The obtained composite PCM has shown excellent shape stability with a high latent heat storage, suggesting its suitability for thermal energy storage applications.

  • PDF

Acceleration data and shape change characteristics of a gravity quay wall according to inclination condition grades

  • Su-Kyeong Geum;Jong-Han Lee;Dohyoung Shin;Jiyoung Min
    • Structural Engineering and Mechanics
    • /
    • v.90 no.6
    • /
    • pp.591-600
    • /
    • 2024
  • This study investigated the acceleration response and shape change characteristics of a gravity quay wall according to the magnitude of the applied acceleration. The quay wall was defined as a port facility damaged by the Kobe earthquake. Four experimental scenarios were established based on the inclination condition grades, considered to be a significant defect factor in the quay wall. Then, the shaking table test was conducted using scaled-down quay wall models constructed per each scenario. The ground acceleration was gradually increased from the peak ground acceleration (PGA) of 0.1 g to 0.7 g. After each ground acceleration test, acceleration installed on the wall and backfill ground and inclination on the top of the wall were measured to assess the amplification of peak response acceleration and maximum response amplitude and the change in the inclination of the quay wall. This study also analyzed the separation of the quay wall from the backfill and the crack pattern of the backfill ground according to PGA values and inclination condition grades. The result of this study shows that response acceleration could provide a reasonable prediction for the changes in the inclination of the quay wall and the crack generation and propagation on the backfill from a current inclination condition grade.

Finite element procedure of initial shape determination for hyperelasticity

  • Yamada, Takahiro
    • Structural Engineering and Mechanics
    • /
    • v.6 no.2
    • /
    • pp.173-183
    • /
    • 1998
  • In the shape design of flexible structures, it is useful to predict the initial shape from the desirable large deformed shapes under some loading conditions. In this paper, we present a numerical procedure of an initial shape determination problem for hyperelastic materials which enables us to calculate an initial shape corresponding to the prescribed deformed shape and boundary condition. The present procedure is based on an Arbitrary Lagrangian-Eulerian (ALE) finite element method for hyperelasticity, in which arbitrary change of shapes in both the initial and deformed states can be treated by considering the variation of geometric mappings in the equilibrium equation. Then the determination problem of the initial shape can be formulated as a nonlinear problem to solve the unknown initial shape for the specified deformed shape that satisfies the equilibrium equation. The present approach can be implemented easily to the finite element method by employing the isoparametric hypothesis. Some basic numerical results are also given to characterize the present procedure.

A Shape Matching Algorithm for Occluded Two-Dimensional Objects (일부가 가리워진 2차원 물체의 형상 정합 알고리즘)

  • 박충수;이상욱
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.12
    • /
    • pp.1817-1824
    • /
    • 1990
  • This paper describes a shape matching algorithm for occluded or distorted two-dimensional objects. In our approach, the shape matchin is viewed as a segment matching problem. A shape matching algorithm, based on both the stochastic labeling technique and the hypothesis generate-test paradigm, is proposed, and a simple technique which performs the stochastic labeling process in accordance with the definition of consisten labeling assignment without requiring an iterative updating process of probability valiues is also proposed. Several simulation results show that the proposed algorithm is very effective when occlusion, scaling or change of orientation has occurred in the object.

  • PDF