• Title/Summary/Keyword: Shallow water ambient noise

Search Result 11, Processing Time 0.018 seconds

Analysis of Dependence on Wind Speed and Ship Traffic of Underwater Ambient Noise at Shallow Sea Surrounding the Korean Peninsula (한반도 주변해역 수중배경소음의 풍속과 선박분포에 따른 의존성 분석)

  • 최복경;김봉채;김철수;김병남
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.233-241
    • /
    • 2003
  • It is statistically analyzed the underwater ambient noise measured at 13 sites less than 200 m deep in the shallow water surrounding the Korean Peninsula for 9 yews from 1990 to 1998 in various environmental conditions. Frequency spectra were obtained with the 1/3-octave band center frequencies from 25㎐ to 20 ㎑. The analyzed shallow water noise spectra were some different from the deep water blown as the Wenz spectra. We could know that the ambient noise level shows higher than it in same condition by effect of various ship activity and the coastal noise, surface waves, and so on. As a result, we produced the coastal ambient noise spectra curve based on these results in shore of the Korea Peninsula.

Analysis of Features and Discriminability of Transient Signals for a Shallow Water Ambient Noise Environment (천해 배경잡음 환경에 적합한 과도신호의 특징 및 변별력 분석)

  • Lee, Jaeil;Kang, Youn Joung;Lee, Chong Hyun;Lee, Seung Woo;Bae, Jinho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.209-220
    • /
    • 2014
  • In this paper, we analyze the discriminability of features for the classification of transient signals with an ambient noise in a shallow water. For the classification of the transient signals, robust features for the variance of a noise are required due to a low SNR under a marine environment. In the modelling the ambient noise in shallow water, theoretical noise model, Wenz's observation data from the shallow water, and Yule-walker filter are used. Discrimination of each feature of the transient signals with an additive ambient noise is analyzed by utilizing a Fisher score. As the analysis of a classification accuracy about the transient signals of 24 classes using the selected features with a high discriminability, the features selected in the environment without a noise relatively have a good classification accuracy. From the analyzed results, we finally select a total 16 features out of 28 features. The recognition using the selected features results in the classification accuracy of 92% in SNR 20dB using Multi-class SVM.

Variation of Underwater Ambient Noise Observed at IORS Station as a Pilot Study

  • Kim, Bong-Chae;Choi, Bok-Kyoung
    • Ocean Science Journal
    • /
    • v.41 no.3
    • /
    • pp.175-179
    • /
    • 2006
  • The Ieodo Ocean Research Station(IORS) is an integrated meteorological and oceanographic observation base which was constructed on the Ieodo underwater rock located at a distance of about 150 km to the south-west of the Mara-do, the southernmost island in Korea. The underwater ambient noise level observed at the IORS was similar to the results of the shallow water surrounding the Korean Peninsula (Choi et al. 2003) and was higher than that of deep ocean (Wenz 1962). The wind dependence of ambient noise was dominant at frequencies of a few kHz. The surface current dependence of ambient noise showed good correlation with the ambient noise in the frequency of 10 kHz. Especially, the shrimp sound was estimated through investigations of waveform and spectrum and its main acoustic energy was about 40 dB larger than ambient noise level at 5 kHz.

Mid-high frequency ocean surface-generated ambient noise model and its applications (중고주파 해수면 생성 배경소음 모델과 응용)

  • Lee, Keunhwa;Seong, Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.5
    • /
    • pp.340-348
    • /
    • 2016
  • Ray-based model for the calculation of the ocean surface-generated ambient noise coherence function has the form of double integral with respect to a range and a bearing angle. While the theoretical consideration about its numerical implementations was partly given in the past work of authors, the numerical results on the ocean environment have not been presented yet. In this paper, we perform numerical experiments for shallow and deep water environments. It is shown that the coherence function depends on the ocean sediment sound speed, and is more sensitive to the ocean sediment sound speed in the shallow water than in the deep water. Similar trend is also observed for varying the orientation of hydrophone pair. In addition, a post-processing technique is proposed in order to plot the noise intensity for the noise receiving angle. This procedure will supplement the weakness of the ray-based model about the output data type compared to the semi-analytic model of Harrison.

Overview of the KIOST-HYU Joint Experiment for Acoustic Propagation in Shallow Water Geological Environment (천해 지질환경에서의 음파전달 특성 연구를 위한 KIOST-한양대 공동실험 개요)

  • Cho, Sungho;Kang, Donhyug;Lee, Cheol-Ku;Jung, Seom-Kyu;Choi, Jee Woong;Oh, Suntaek
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.6
    • /
    • pp.411-422
    • /
    • 2015
  • This paper presents an overview of the geological environment investigation and underwater acoustic measurements for the purpose of "Study on the Relationship between the Geological Environment and Acoustic Propagation in Shallow Water", which are jointly carried out by KIOST (Korea Institute of Ocean Science & Technology) and Hanyang University in the western shallow water off the Taean peninsula in the Yellow Sea in April-May 2013. The experimental site was made up of various sediment types and bedforms due to the strong tidal currents and coastal geomorphological characteristics. The geological characteristics of the study area were intensively investigated using multi-beam echo sounder, sub-bottom profiler, sparker system and grab sampler. Acoustic measurements with a wide range of research topics in a frequency range of 20~16,000 Hz: 1) low frequency sound propagation, 2) mid-frequency bottom loss, 3) spatial coherence analysis of ambient noise, and 4) mid- frequency bottom backscattering were performed using low- and mid-frequency sound sources and vertical line array. This paper summarizes the topics that motivated the experiment, methodologies of the acoustic measurements, and acoustic data analysis based on the measured geological characteristics, and describes summary results of the geological, meteorological, and oceanographic conditions found during the experiments.

Underwater Acoustic Communication Link Analysis (수중음향통신 링크 해석)

  • Choi, Young-Chol;Byun, Sung-Hoon;Lim, Yong-Kon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.8
    • /
    • pp.1465-1471
    • /
    • 2007
  • The electro-magnetic wave propagates through the air in the terrestrial communications, but the acoustic wave propagates through the seawater in the underwater acoustic communication(UAC). It makes the differences between the UAC link and the well hon air communication links. In this paper, we have studied path loss, absorption and ambient noise of the ocean as a medium for UAC. We have analyzed the absorption coefficient and ambient noise level of the coastal area of South Korea and suggested a strategy for the selection of the frequency band by considering the absorption coefficient and ambient noise level. Also, we present an illustrative example of a link budget for the QPSK UAC system which has carrier frequency 25kHz, bit rate 10kbps, range 1km and BER $10^{-3}$ in the shallow water environment with an ideal AWGN assumption.

Recursive Estimation of Biased Zero-Error Probability for Adaptive Systems under Non-Gaussian Noise (비-가우시안 잡음하의 적응 시스템을 위한 바이어스된 영-오차확률의 반복적 추정법)

  • Kim, Namyong
    • Journal of Internet Computing and Services
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • The biased zero-error probability and its related algorithms require heavy computational burden related with some summation operations at each iteration time. In this paper, a recursive approach to the biased zero-error probability and related algorithms are proposed, and compared in the simulation environment of shallow water communication channels with ambient noise of biased Gaussian and impulsive noise. The proposed recursive method has significantly reduced computational burden regardless of sample size, contrast to the original MBZEP algorithm with computational complexity proportional to sample size. With this computational efficiency the proposed algorithm, compared with the block-processing method, shows the equivalent robustness to multipath fading, biased Gaussian and impulsive noise.

Considerations of Environmental Factors Affecting the Detection of Underwater Acoustic Signals in the Continental Regions of the East Coast Sea of Korea

  • Na, Young-Nam;Kim, Young-Gyu;Kim, Young-Sun;Park, Joung-Soo;Kim, Eui-Hyung;Chae, Jin-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.2E
    • /
    • pp.30-45
    • /
    • 2001
  • This study considers the environmental factors affecting propagation loss and sonar performance in the continental regions of the East Coast Sea of Korea. Water mass distributions appear to change dramatically in a few weeks. Simple calculation with the case when the NKCW (North Korean Cold Water) develops shows that the difference in propagation loss may reach in the worst up to 10dB over range 5km. Another factor, an eddy, has typical dimensions of 100-200km in diameter and 150-200m in thickness. Employing a typical eddy and assuming frequency to be 100Hz, its effects on propagation loss appear to make lower the normal formation of convergence zones with which sonars are possible to detect long-range targets. The change of convergence zones may result in 10dB difference in received signals in a given depth. Thermal fronts also appear to be critical restrictions to operating sonars in shallow waters. Assuming frequency to be 200Hz, thermal fronts can make 10dB difference in propagation loss between with and without them over range 20km. An observation made in one site in the East Coast Sea of Korea reveals that internal waves may appear in near-inertial period and their spectra may exist in periods 2-17min. A simulation employing simple internal wave packets gives that they break convergence zones on the bottom, causing the performance degradation of FOM as much as 4dB in frequency 1kHz. An acoustic experiment, using fixed source and receiver at the same site, shows that the received signals fluctuate tremendously with time reaching up to 6.5dB in frequencies 1kHz or less. Ambient noises give negative effects directly on sonar performance. Measurements at some sites in the East Coast Sea of Korea suggest that the noise levels greatly fluctuate with time, for example noon and early morning, mainly due to ship traffics. The average difference in a day may reach 10dB in frequency 200Hz. Another experiment using an array of hydrophones gives that the spectrum levels of ambient noises are highly directional, their difference being as large as 10dB with vertical or horizontal angles. This fact strongly implies that we should obtain in-situ information of noise levels to estimate reasonable sonar performance. As one of non-stationary noise sources, an eel may give serious problems to sonar operation on or under the sea bottoms. Observed eel noises in a pier of water depth 14m appear to have duration time of about 0.4 seconds and frequency ranges of 0.2-2.8kHz. The 'song'of an eel increases ambient noise levels to average 2.16dB in the frequencies concerned, being large enough to degrade detection performance of the sonars on or below sediments. An experiment using hydrophones in water and sediment gives that sensitivity drops of 3-4dB are expected for the hydrophones laid in sediment at frequencies of 0.5-1.5kHz. The SNR difference between in water and in sediment, however, shows large fluctuations rather than stable patterns with the source-receiver ranges.

  • PDF

A study on the estimation of wind noise level using the measured wind-speed data in the coastal area of the East Sea (동해 연안에서 관측된 풍속자료를 이용한 바람소음준위 추정 연구)

  • Park, Jisung;Kang, Donghyug;Kim, Mira;Cho, Sungho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.4
    • /
    • pp.378-386
    • /
    • 2019
  • Unlike ship noise that radiates from moving ships, wind noise is caused by breaking waves as a result of the interaction between the wind and the sea surface. In this paper, WNL (Wind Noise Level) was modeled by considering the noise source of the wind as the bubble cloud generated by the breaking waves. In the modeling, SL( Source Level) of the wind noise was calculated using the wind-speed data measured from the weather buoy operated in the coastal area of the East Sea. At the same time as observing the wind speed, NL (Noise Level) was continuously measured using a self-recording hydrophone deployed near the weather buoy. The modeled WNL according to the wind speed and the measured NL removing the shipping noise from the acoustic raw data were compared in the low-frequency band. The overall trends between the modeled WNL and the measured NL were similar to each other. Therefore, it was confirmed that it is possible to model the WNL in the shallow water considering the SL and distribution depth of bubble cloud caused by the wind.

Target Signal Simulation in Synthetic Underwater Environment for Performance Analysis of Monostatic Active Sonar (수중합성환경에서 단상태 능동소나의 성능분석을 위한 표적신호 모의)

  • Kim, Sunhyo;You, Seung-Ki;Choi, Jee Woong;Kang, Donhyug;Park, Joung Soo;Lee, Dong Joon;Park, Kyeongju
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.6
    • /
    • pp.455-471
    • /
    • 2013
  • Active sonar has been commonly used to detect targets existing in the shallow water. When a signal is transmitted and returned back from a target, it has been distorted by various properties of acoustic channel such as multipath arrivals, scattering from rough sea surface and ocean bottom, and refraction by sound speed structure, which makes target detection difficult. It is therefore necessary to consider these channel properties in the target signal simulation in operational performance system of active sonar. In this paper, a monostatic active sonar system is considered, and the target echo, reverberation, and ambient noise are individually simulated as a function of time, and finally summed to simulate a total received signal. A 3-dimensional highlight model, which can reflect the target features including the shape, position, and azimuthal and elevation angles, has been applied to each multipath pair between source and target to simulate the target echo signal. The results are finally compared to those obtained by the algorithm in which only direct path is considered in target signal simulation.