• Title/Summary/Keyword: Shallow groundwater pumping

Search Result 21, Processing Time 0.019 seconds

Geochemical Equilibria and Kinetics of the Formation of Brown-Colored Suspended/Precipitated Matter in Groundwater: Suggestion to Proper Pumping and Turbidity Treatment Methods (지하수내 갈색 부유/침전 물질의 생성 반응에 관한 평형 및 반응속도론적 연구: 적정 양수 기법 및 탁도 제거 방안에 대한 제안)

  • 채기탁;윤성택;염승준;김남진;민중혁
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.103-115
    • /
    • 2000
  • The formation of brown-colored precipitates is one of the serious problems frequently encountered in the development and supply of groundwater in Korea, because by it the water exceeds the drinking water standard in terms of color. taste. turbidity and dissolved iron concentration and of often results in scaling problem within the water supplying system. In groundwaters from the Pajoo area, brown precipitates are typically formed in a few hours after pumping-out. In this paper we examine the process of the brown precipitates' formation using the equilibrium thermodynamic and kinetic approaches, in order to understand the origin and geochemical pathway of the generation of turbidity in groundwater. The results of this study are used to suggest not only the proper pumping technique to minimize the formation of precipitates but also the optimal design of water treatment methods to improve the water quality. The bed-rock groundwater in the Pajoo area belongs to the Ca-$HCO_3$type that was evolved through water/rock (gneiss) interaction. Based on SEM-EDS and XRD analyses, the precipitates are identified as an amorphous, Fe-bearing oxides or hydroxides. By the use of multi-step filtration with pore sizes of 6, 4, 1, 0.45 and 0.2 $\mu\textrm{m}$, the precipitates mostly fall in the colloidal size (1 to 0.45 $\mu\textrm{m}$) but are concentrated (about 81%) in the range of 1 to 6 $\mu\textrm{m}$in teams of mass (weight) distribution. Large amounts of dissolved iron were possibly originated from dissolution of clinochlore in cataclasite which contains high amounts of Fe (up to 3 wt.%). The calculation of saturation index (using a computer code PHREEQC), as well as the examination of pH-Eh stability relations, also indicate that the final precipitates are Fe-oxy-hydroxide that is formed by the change of water chemistry (mainly, oxidation) due to the exposure to oxygen during the pumping-out of Fe(II)-bearing, reduced groundwater. After pumping-out, the groundwater shows the progressive decreases of pH, DO and alkalinity with elapsed time. However, turbidity increases and then decreases with time. The decrease of dissolved Fe concentration as a function of elapsed time after pumping-out is expressed as a regression equation Fe(II)=10.l exp(-0.0009t). The oxidation reaction due to the influx of free oxygen during the pumping and storage of groundwater results in the formation of brown precipitates, which is dependent on time, $Po_2$and pH. In order to obtain drinkable water quality, therefore, the precipitates should be removed by filtering after the stepwise storage and aeration in tanks with sufficient volume for sufficient time. Particle size distribution data also suggest that step-wise filtration would be cost-effective. To minimize the scaling within wells, the continued (if possible) pumping within the optimum pumping rate is recommended because this technique will be most effective for minimizing the mixing between deep Fe(II)-rich water and shallow $O_2$-rich water. The simultaneous pumping of shallow $O_2$-rich water in different wells is also recommended.

  • PDF

Removal of Dissolved Iron in Groundwater by Injection-and-Pumping Technique: Application of Reactive Transport Modeling (주입-양수 기법을 활용한 지하수 내 용존 철 제거: 반응성용질이동모델링의 적용)

  • Choi, Byoung-Young;Yun, Seong-Taek;Kim, Kyoung-Ho;Koh, Yong-Kwon;Kim, Kang-Joo
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.6
    • /
    • pp.29-37
    • /
    • 2007
  • Shallow alluvial groundwaters in Korea of tell exceed the Korean Drinking Water Standard for dissolved iron (0.3 mg/L), which is one of the important water quality problems, especially in the use of bank infiltration technique. Using the reactive transport modeling, in this study we simulated the effectiveness of injection-and-pumping technique to remove dissolved iron in groundwater. The results of simulation showed that pumping of groundwater after injection of oxygenated water into aquifers is very effective to acquire the permissible water quality level. Groundwater withdrawal up to several times of irjected water in volume can be applicable to yield drinkable water. Potential problems such as clogging and permeability lowering due to in-situ precipitation of iron hydroxides may be insignificant. We also discuss on the mechanism and spatial extent of iron removal in aquifer.

A Study on Significant Parameters for Efficient Design of Open-loop Groundwater Heat Pump (GWHP) Systems (개방형 지열시스템의 효율적 설계를 위한 영향인자에 대한 연구)

  • Park, Byeong-Hak;Joun, Won-Tak;Lee, Bo-Hyun;Lee, Kang-Kun
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.4
    • /
    • pp.41-50
    • /
    • 2015
  • Open-loop groundwater heat pump (GWHP) system generally has benefits such as a higher coefficient of performance (COP), lower initial cost, and flexible system size. The hydrogeological conditions in Korea have the potential to facilitate the use of the GWHP system because a large number of monitoring wells show stable groundwater temperatures, shallow water levels, and high well yields. However, few studies have been performed in Korea regarding the GWHP system and the most studies among them dealt with Standing Column Well (SCW). Because the properties of the aquifer have an influence on designing open-loop systems, it is necessary to perform studies on various hydrogeological settings. In this study, the hydrogeological and thermal properties were estimated through various tests in the riverside alluvial layer where a GWHP system was installed. Under different groundwater flow velocities and pumping and injection rates, a sensitivity analysis was performed to evaluate the effect of such properties on the design of open-loop systems. The results showed that hydraulic conductivity and thermal dispersivity of the aquifer are the most sensitive parameters in terms of performance and environmental aspects, and sensitivities of the properties depend on conditions.

Seasonal Variations of EWT and COP of GWHP System Using the Bank Infilterated Water from Stream-Alluvial Aquifer System (하천-충적대수층계의 강변여과수를 열원으로 이용하는 지하수 열펌프 시스템의 계절별 입구온도와 효율성 평가)

  • Hahn, Chan;Jeon, Jae-Soo;Yoon, Yoon-Sang;Han, Hyok-Sang;Hahn, Jeong-Sang
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.3 no.2
    • /
    • pp.39-51
    • /
    • 2007
  • Unconsolidated and permeable alluvial deposit composed of sand and gravel is distributed along the fluvial plain at the Iryong study area. Previous studies on the area show that a single alluvial well can produce at least 1,650m3d-1 of bank infilterated shallow groundwater(BIGW) from the deposit. This study is aimed to evaluate and simulate the influence that seasonal variation of water levels and temperatures of the river have an effect on those of BIGW under the pumping condition and also to compare seasonal variation of COPs when indirectly pumped BIGW or directly pumped surface water are used for a water to water heat pump system as an heat source and sink using 3 D flow and heat transport model of Feflow. The result shows that the magnitude influenced to water level of BIGW by fluctuation of river water level in summer and winter is about 48% and 75% of Nakdong river water level separately. Seasonal change of river water temperature is about $23.7^{\circ}C$, on other hand that of BIGW is only $3.8^{\circ}C$. The seasonal temperatures of BIGW are ranged from minimum $14.5^{\circ}C$ in cold winter(January) and maximum $18.3^{\circ}C$ in hot summer(July). It stands for that BIGW is a good source of heat energy for heating and cooling system owing to maintaining quite similar temperature($16^{\circ}C$) of background shallow groundwater. Average COPh in winter time and COPc in summer time of BIGW and surface water are estimated about 3.95, 3.5, and about 6.16 and 4.81 respectively. It clearly indicates that coefficient of performance of heat pump system using BIGW are higher than 12.9% in winter time and 28.1% in summer time in comparision with those of surface water.

  • PDF

The Water Environment at the Seokdae Waste Landfill Area in the Pusan Metropolitan City (부산 석대 폐기물 매립지 일원의 수질 환경)

  • 정상용;권해우;이강근;김윤영
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.4
    • /
    • pp.175-184
    • /
    • 1997
  • The Seokdae Waste Landfill is a middle-sized site used from June, 1987 to May, 1993. Many joints and faults are developed in andesitic rocks and rhyolitic rocks distributed at the landfill. The chemical analyses of leachates, streams and groundwaters sampled in July, 1996 and June, 1997 show that the concentrations of leachates and streams were decreased, and that the groundwater qualities became worse. The groundwater contamination is deeply extended to not only shallow groundwater but also bedrock-groundwater around the Seokdae Waste Landfill Area. The range of groundwater contamination by the leachates is about 500 m to the west and about 1 km to the south from the boundaries of the waste landfill. The development of monitoring wells and pumping wells, the construction of a leachate-treatment facilities, and the adjustment of the existing grout curtains are necessary for the control of water pollution at the Seokdae Waste Landfill Area.

  • PDF

Evaluating Applicability of Hunt's Analytical Solution for Groundwater Pumping from a Leaky Aquifer (누수대수층 지하수 양수에 관한 Hunt 해석해의 적용성 평가)

  • Lee, Jeongwoo;Chung, Il-Moon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.555-561
    • /
    • 2020
  • In this study, the applicability of Hunt's analytical solution for a two-layered leaky aquifer system, which was developed to estimate stream depletion due to the groundwater pumping of the upper shallow aquifer, was evaluated. The 5-year averaged stream depletions were estimated using Hunt's analytical solution for various combinations of hydraulic characteristic values such as transmissivity, storage coefficient of the two aquifers, interlayer leakage coefficient, stream-well distance, hydraulic conductivity of the streambed, and stream width. Through comparison with the numerical solution accurately simulated with a MODFLOW groundwater flow model, the analytical solution derived by regarding the stream width as a point was evaluated. It was found that the error in the stream depletion calculated by the analytical solution can be reduced to less than 0.05 when the stream-well distance is greater than the stream width or when the stream depletion factor (SDF) is more than about 3,000 days. In addition, when the streambed hydraulic conductivity is less than 1 m/d, the hydraulic diffusion coefficient of the lower aquifer layer is less than 100 ㎡/d, the hydraulic diffusion coefficient ratio of the upper and lower aquifer layers is 5 or more, and the leakage coefficient between the layers is less than 0.0004 m/d, the overall analytical solutions were overestimated compared with the numerical solutions.

A Study on Hydrogeologic, Hydrodispersive Characterization and Groundwater Contamination Assessment of an H-site (H 연구지역의 수리지질-수리분산특성과 지하수 오염가능성 평가연구)

  • Hahn, Jeongsang
    • Economic and Environmental Geology
    • /
    • v.27 no.3
    • /
    • pp.295-311
    • /
    • 1994
  • A comprehensive in-situ tests are performed to define the hydrogeologic and hydrodispersive characteristics such as hydraulic conductivities, longitudinal dispersivity, and average linear velocities as well as conducting flow-net analysis at the study area. The results show that the study area is very heterogeneous so that hydraulic conductivities range from $6.45{\times}10^{-7}$ to $1.15{\times}10^{-5}m/s$ with average linear velocities of 0.34~0.62m/day. Whole groundwater in upper-most aquifer is discharging into the sea with specific discharge rate of $7.2{\times}10^{-3}$ to $1.3{\times}10^{-2}m/day$. The longitudinal dispersivity of the aquifer is estimated about 4.8m through In-situ injection phase test. The area is highly vulnerable to potential contaminant sources due to it's high value of DRASTIC index ranging from 139 to 155 and also under water table condition with very shallow groundwater level. To delineate contaminant plumes of toxic NaOH and carcinogenic benzene when these substances are assumed to be leaked through existing TSDF at the study area by unexpected accidents or spill, Aquifer Simulation Model (ASM) including Flow and Transport Model is used. Te simulated results reveal that the size of NaOH plume after 5 years continuous leak is about $250{\times}100m$ and benzene after 10 years, $490{\times}100m$. When the groundwater is abstracted about 50 days, which is maximum continuously sustained no-precipitation period during 30 years, with pumping rate of $100m^3/day$, THWELL program shows that the groundwater is adversly affected by sea water intrusion.

  • PDF

Estimation of Specific Yield Using Rainfall and Groundwater Levels at Shallow Groundwater Monitoring Sites (충적층 지하수 관측지점의 강우량 대비 지하수위 변동 자료를 활용한 비산출율 추정)

  • Kim, Gyoobum
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.6
    • /
    • pp.57-67
    • /
    • 2010
  • Specific yield is an essential parameter of the water table fluctuation method for recharge calculation. Specific yield is not easily estimated because of limited availability of aquifer test data and soil samples at National Groundwater Monitoring Stations in South Korea. The linear relationship between rainfall and water level rise was used to estimate the specific yields of aquifer for 34 shallow monitoring wells which were grouped into three clusters. In the case of Cluster-1 and Cluster-2, this method was not applicable because of low cross correlation between rainfall and water level rise and also a long lag time of water level rise to rainfall. However, the specific yields for 19 monitoring wells belonging to Cluster-3, which have relatively high cross correlation and short lag time, within 2 days after rainfall, range from 0.06 to 0.27 with mean value of 0.17. These values are within the general range for sand and gravel sediments and similar to those from aquifer test data. A detailed field survey is required to identify monitoring sites that are not greatly affected by pumping, stream flow, evapotranspiration, or delayed response of water levels to rainfall, because these factors may cause overestimation of specific yield estimates.

Evaluation and characteristics of commercial Portable ground-water in Korea

  • Cho, Byong-Wook;Sung, Ig-Hwan;Choo, Chang-O;Lee, Byeong-Dae;Kim, Tong-Kwon;Lee, In-Ho
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.119-122
    • /
    • 1998
  • Chemical analysis, measurement of pumping rates of 60 production wells and depth to water tables of 57 monitoring wells were carried to protect depletion of water resources and deterioration of water quality for the commercial portable ground-water. Borehole depth of production well averages 149m(31 boreholes), casing depth is 28m(29 boreholes), production rate is 70 $m^3$/day and depth to water table of monitoring well is 23.26m, respectively. The geology of 60 wells can be divided into Daebo granite(20), Okchun metarmorphic complex(18), Precambrian granitic gneiss(15), Bulguksa granite(4), Cheju volcanics(2), Cretaceous sedimentary rock(1). Average electrical conductivity and pH are 152$\mu$S/cm, and 7.35, respectively. The contents of major cation and anion predominantly $Ca^{2+}$>N $a^{+}$>M $g^{2+}$> $K^{+}$ and HC $O_{3}$$^{-}$ >S $O_{4}$$^{2-}$>Cl ̄>F ̄. Water type is predominantly $Ca^{2+}$-HC $O_{3}$$^{-}$(81.7%). It's possible that water chemistry of some wells were affected not only by the geology of boreholes penetrated but by inflows of surface water or shallow ground-water. Therefore, it is strongly necessary to steadily monitor the water quality and hydrogeologic conditins of production wells.ells.ls.ells.

  • PDF

A Study on the Flow and Dispersion in the Coastal Unconfined Aquifer (Development and Application of a Numerical Model) (해안지역 비피압 충적 대수층에서의 흐름 및 분산(수치모형의 개발 및 적용))

  • Kim, Sang Jun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.1
    • /
    • pp.61-72
    • /
    • 2016
  • In Korea, the aquifers at the coastal areas are mostly shallow alluvial unconfined aquifers. To simulate the flow and dispersion in unconfined aquifer, a FDM model has been developed to solve the nonlinear Boussinesq equation. Related analysis and verification have been executed. The iteration method is used to solve the nonlinearity, and the model shows 3-D shape because it is a 2-D y model that consider the undulation of water table and bottom. For the verification of the model, the output of flow module is compared to the 1-D analytic solution of Lee (1989) which have the drawdown or uplift boundary condition, and the two results show almost the same value. and the mass balance of dispersion module shows about 10% error. The developed model can be used for the analysis and design of the flow and dispersion in the unconfined aquifers. The model has been applied to the estuary area of Ssangcheon watershed, and the parameters have been deduced as a result : hydraulic conductivity is 90 m/day, and longitudinal dispersivity is 15 m. And the analysis with these parameters shows that the wells are situated in the influence circle of each others except for No. 7 well. Groundwater discharge to sea is $3700m^3/day$. And the chlorine ion ($cl^-$) concentration at the pumping wells increase at least 1000 mg/L if groundwater dam is not exist, so the groundwater dam plays an important role for the prevention of sea water intrusion.