• Title/Summary/Keyword: Shallow and deep doses

Search Result 7, Processing Time 0.025 seconds

A Review of Radiation Field Characteristics and Field Tests for Estimating on the Extremity Dose under Contact Tasks with Radioactive Materials (방사성물질과 접촉하는 작업의 손·발이 받는 피폭방사선량 평가에 대한 고찰)

  • Kim, Hee-Geun;Kong, Tae-Young;Dong, Kyung-Rae;Choi, Eun-Jin
    • Journal of Radiation Industry
    • /
    • v.11 no.3
    • /
    • pp.123-130
    • /
    • 2017
  • Concerns about high radiation exposure to the hands of radiation workers who may contact with radioactive contamination on surfaces in a nuclear power plant (NPP) had been raised, and the Korean regulatory body required the extremity dose estimation during contact tasks with radioactive materials. Korean NPPs conducted field tests to identify the incident radiation to the hands of radiation workers who may contact with radioactive contamination during maintenance periods. The results showed that the radiation fields for contact tasks are dominated by high energy photons. It was also found that the radiation doses to the hands of radiation workers in Korean NPPs were much less than the annual dose limits for extremities. This approach can be applicable to measure and estimate the extremity dose to the hands of medical workers who handle the radioactive materials in a hospital.

A Study on the Radiation Exposure Dose of Clinical Trainees in the Department of Radiology: A Case Study at C University Hospital (방사선(학)과 임상실습생의 수시출입자 피폭선량에 대한 고찰: C 대학병원 사례 연구)

  • Joo-Ah Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.2
    • /
    • pp.249-255
    • /
    • 2023
  • In this study, radiation exposure doses were measured in the course of clinical practice of radiation workers, radiological technologists in the radiation-related worker group, and preliminary-radiological technologists who were classified as frequent visitors. Radiological technologists who worked in the radiation area of C University Hospital in Incheon for a year from January 2021 and 121 students who completed clinical practice at the same medical institution from July 1 to August 31 were the subjects of the study. The nominal risk factor based on ICRP 103 was used to evaluate the probability of side effects due to the exposure dose to the lungs, which are organs at risk of damage due to radiation exposure dose. During the clinical practice period, radiology students, who were classified as frequent visitors, had a surface dose of 0.98 ± 0.14 mSv and a deep dose of 0.93 ± 0.14 mSv. In other words, 6.7 per 1,000,000 for shallow dose and 6.4 per 1,000,000 for deep dose were found to have side effects due to exposure to the lungs. This is a value in terms of exposure dose in one year. Considering that the radiation (science) education course is 3 or 4 years, systematic management and attention to prospective radiation workers who are going to clinical practice are required, and the stochastic effect of radiation In relation to this, it is considered that it will be used as basic data for radiation safety management.

A Comparative Analysis of Exposure Doses between the Radiation Workers in Dental and General Hospital (일반병원과 치과병원과의 방사선 관계종사자 피폭선량 비교분석)

  • Yang, Nam-Hee;Chung, Woon-Kwan;Dong, Kyung-Rae;Choi, Eun-Jin;Ju, Yong-Jin;Song, Ha-jin
    • Journal of Radiation Industry
    • /
    • v.9 no.1
    • /
    • pp.47-55
    • /
    • 2015
  • Research and investigation is required for the exposure dose of radiation workers to work in the dental hospital as increasing interest in exposure dose of the dental hospital recently accordingly, study aim to minimize radiation exposure by making a follow-up study of individual exposure doses of radiation workers, analyzing the status on individual radiation exposure management, prediction the radiation disability risk levels by radiation, and alerting the workers to the danger of radiation exposure. Especially given the changes in the dental hospital radiation safety awareness conducted the study in order to minimize radiation exposure. This study performed analyses by a comparison between general and dental hospital, comparing each occupation, with the 116,220 exposure dose data by quarter and year of 5,811 subjects at general and dental hospital across South Korea from January 1, 2008 through December 31, 2012. The following are the results obtained by analyzing average values year and quarter. In term of hospital, average doses were significantly higer in general hospitals than detal ones. In terms of job, average doses were higher in radiological technologists the other workes. Especially, they showed statistically significant differences between radiological technologists than dentists. The above-mentioned results indicate that radiation workers were exposed to radiation for the past 5 years to the extent not exceeding the dose limit (maximum $50mSv\;y^{-1}$). The limitation of this study is that radiation workers before 2008 were excluded from the study. Objective evaluation standards did not apply to the work circumstance or condition of each hospital. Therefore, it is deemed necessary to work out analysis criteria that will be used as objective evaluation standard. It will be necessary to study radiation exposure in more precise ways on the basis of objective analysis standard in the furture. Should try to minimize the radiation individual dose of radiation workers.

Shielding 140 keV Gamma Ray Evaluation of Dose by Depth According to Thickness of Lead Shield (140 keV 감마선 차폐 시 납 차폐체 두께에 따른 깊이별 선량 평가)

  • Kim, Ji-Young;Lee, Wang-Hui;Ahn, Sung-Min
    • Journal of radiological science and technology
    • /
    • v.41 no.2
    • /
    • pp.129-134
    • /
    • 2018
  • The present study made a phantom for gamma ray of 140 keV radiated from $^{99m}Tc$, examined shielding effect of lead by thickness of the shielding material, and measured surface dose and depth dose by body depth. The OSL Nano Dot dosimeter was inserted at 0, 3, 15, 40, 90, and 180 mm depths of the phantom, and when there was no shield, 0.2 mm lead shield, 0.5 mm lead shield, The depth dose was measured. Experimental results show that the total cumulative dose of dosimeters with depth is highest at 366.24 uSv without shield and lowest at 94.12 uSv with 0.5 mm lead shield. The shielding effect of 0.2 mm lead shielding was about 30.18% and the shielding effect of 0.5 mm lead shielding was 74.30%, when the total sum of the accumulated doses of radiation dosimeter was 100%. The phantom depth and depth dose measurements showed the highest values at 0 mm depth for all three experiments and the dose decreases as the depth increases. This study proved that the thicker a shielding material, the highest its shielding effect is against gamma ray of 140 keV. However, it was known that shielding material can't completely shield a body from gamma ray; it reached deep part of a human body. Aside from the International Commission on Radiation Units and Measurements (ICRU) recommending depth dose by 10 mm in thickness, a plan is necessary for employees working in department of nuclear medicine where they deal with gamma ray, which is highly penetrable, to measure depth dose by body depth, which can help them manage exposed dose properly.

A Study on the Exposure Dose of Frequent Workers and Radiation Workers in a University Hospital (일개 대학병원의 수시출입자와 방사선작업종사자의 피폭선량에 관한 고찰)

  • Joo-Ah Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.581-587
    • /
    • 2023
  • In this study, we tried to provide basic data for radiation safety management by comparing and analyzing the exposure doses of radiation workers and frequent workers at C University Hospital in Incheon. From January 2021 to December 2022, surface dose and deep dose were analyzed for 30 radiation workers and 8 frequent workers who worked at C university hospital in Incheon. Radiation workers were targeted at radiation technicians and nurses working in the radiation oncology department and nuclear medicine department, and frequent visitors were targeted at frequent workers who manage and clean facilities in the same radiation management area. In the radiation worker group, 3.1 per 10,000 radiation technologist, 1.2 per 100,000 nurses, and 4.5 per 1,000,000 frequent workers showed the possibility of developing side effects on the lungs. The probability of radiation oncology was 1.1 per 10,000 for radiation technologist and 5.2 per 1,000,000 for nurses, and the probability of radiation technologist in nuclear medicine was 2.9 per 10,000 and for nurses was 7.1 per 1,000,000. It is hoped that this study can be used as basic data in future revisions on frequent workers, and it is considered that it will be used as basic data in the field of obstacles in relation to the stochastic effect of radiation in the future.

A Field Test Assessment on the Extremity Doses of Highly-Exposed Radiation Workers During Maintenance Periods at Nuclear Power Plants in Korea (원전 계획예방정비기간 고피폭 접촉작업에서 방사선작업종사자의 말단선량 평가 현장시험)

  • Kim, Hee-Geun;Kong, Tae-Young
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.2
    • /
    • pp.57-62
    • /
    • 2010
  • Maintenance on the water chamber of steam generator, the change of pressurizer heater, the removal of pressure tube feeder, and so on during outage in nuclear power plants (NPPs) has a likelihood of high radiation exposure to whole body of workers even short time period due to the high radiation exposure rates. In particular, it is expected that hands would receive the highest radiation exposure because of its contact with radiation materials. In this study, field tests on extremity dose assessment of radiation workers for contact works with high radiation exposure were conducted during the maintenance periods in Korean pressurized water reactors (PWRs) and pressurized heavy water reactors (PHWRs). In this field test, radiation workers were required to wear additional TLDs on the back and wrist, and an extremity dosimeter on fingers including a main TLD on the chest, while performing maintenance. As a result, it was found that the equivalent dose for fingers was distributed in the fixed range of deep dose and the equivalent dose for wrists.

Dose Distribution and Design of Dynamic Wedge Filter for 3D Conformal Radiotherapy (방사선 입체조형치료를 위한 동적쐐기여과판의 고안과 조직내 선량분포 특성)

  • 추성실
    • Progress in Medical Physics
    • /
    • v.9 no.2
    • /
    • pp.77-88
    • /
    • 1998
  • Wedge shaped isodoses are desired in a number of clinical situations. Hard wedge filters have provided nominal angled isodoses with dosimetric consequences of beam hardening, increased peripheral dosing, nonidealized gradients at deep depths along with the practical consequendes of filter handling and placement problems. Dynamic wedging uses a combination of a moving collimator and changing monitor dose to achieve angled isodoses. The segmented treatment tables(STT) that monitor unit setting by every distance of moving collimator, was induced by numerical formular. The characteristics of dynamic wedge by STT compared with real dosimetry. Methods and Materials : The accelerator CLINAC 2100C/D at Yonsei Cancer Center has two photon energies (6MV and 10MV), currently with dynamic wedge angles of 15$^{\circ}$, 30$^{\circ}$, 45$^{\circ}$ and 60$^{\circ}$. The segmented treatment tables(STT) that drive the collimator in concert with a changing monitor unit are unique for field sizes ranging from 4.0cm to 20.0cm in 0.5cm steps. Transmission wedge factors were measured for each STT with an standard ion chamber. Isodose profiles, isodose curves, percentage depth dose for dynamic wedge filters were measured with film dosimetry. Dynamic wedge angle by STT was well coincident with film dosimetry. Percent depth doses were found to be closer to open field but more shallow than hard wedge filter. The wedge transmission factor were decreased by increased the wedge angle and more higher than hard wedge filters. Dynamic wedging probided more consistent gradients across the field compared with hard wedge filters. Dynamic wedging has practical and dosimetric advantages over hard filters for rapid setup and keeping from table collisions. Dynamic wedge filters are positive replacement for hard filters and introduction of dynamic conformal radiotherapy and intensity modulation radiotherapy in a future.

  • PDF