• Title/Summary/Keyword: Shallow Water Waves

Search Result 194, Processing Time 0.03 seconds

THE FORMAL LINEARIZATION METHOD TO MULTISOLITON SOLUTIONS FOR THREE MODEL EQUATIONS OF SHALLOW WATER WAVES

  • Taghizadeh, N.;Mirzazadeh, M.;Paghaleh, A. Samiei
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.3
    • /
    • pp.381-391
    • /
    • 2012
  • In this paper, the formal linearization method is used to construct multisoliton solutions for three model of shallow water waves equations. The three models are completely integrable. The formal linearization method is an efficient method for obtaining exact multisoliton solutions of nonlinear partial differential equations. The method can be applied to nonintegrable equations as well as to integrable ones.

Numerical Simulation of Longshore Current due to Random Sea Waves (불규칙파에 의한 연안류의 수치계산)

  • 권정곤;양윤모
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.2
    • /
    • pp.72-82
    • /
    • 1992
  • To accurately estimate nearshore current in shallow water regions. it is necessary to investigate the irregular wave transformation characteristics and radiation stress produced by random sea waves. This research is to investigate the application or the individual wave Analysis Method. the Component Wave Analysis Method and Representative Wave Analysis Method in the shallow water region. These methods were estimated by wave shallowing transformation when the waves propagate from deep water to shallow water region b)r generating regular waves, two component waves and irregular waves (Bretschneider-Mitsuyasu type). That is, the Indivisual Wave Analysis Method is to investigate from the viewpoint of shallow water transformation of wave statistical characteristics and their zero-down-crossing waves (wave height period and wave celerity). And the component Wave Analysis Method is to investigate from the view point of shallow water transformation of basic frequency component wave and their interference frequency component wave. In addition, this research is to compare the measured mean water level elevation with the calculated one from radiation stress of irreguar waves that is assumed in the three methods above.

  • PDF

A Study on the Numerical Calculation for Wind Waves During the Passage of Typhoon 'Memi' (태풍 '매미' 내습시 파랑선정에 관한 기초적 연구)

  • LEE GYONG-SEON;KIM HONG-JIN;YOON HAN-SAM;RYU CHEONG-RO
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.229-234
    • /
    • 2004
  • A Typhoon wave is generated by wind fields during the Passage of Typhoon. Transporting wind field makes wind wave and swell in the open sea, and then, those wave components are transported in the shallow water. Typhoon waves in the shallow water is generated by Typhoon wind field and incident wave. Bisides, Incident waves to the shallow water are deformated by topographic conditions. This paper estimated the analysis of the Typhoon waves by wind fields and incident waves according to wave action balance equation model. As the result of wave numerical experiment, wave field during the passage of Typhoon 'Memi' in the shallow water is strongly effect by wind fields. Wave action balance equaion can be partially used for Typhoon wave simulations.

  • PDF

Experimental studies of impact pressure on a vertical cylinder subjected to depth induced wave breaking

  • Vipin, Chakkurunnipalliyalil;Panneer Selvam, Rajamanickam;Sannasiraj Annamalaisamy, Sannasiraj
    • Ocean Systems Engineering
    • /
    • v.12 no.4
    • /
    • pp.439-459
    • /
    • 2022
  • This paper describes experimental studies of impact pressure generated by breaking regular waves in shallow water on a vertical cylinder. Experimental work was carried out in a shallow water flume using a 1:30 - scale model of a vertical rigid circular hollow cylinder with a diameter 0.2 m. This represents a monopile for shallow water offshore wind turbines, subjected to depth induced breaking regular waves of frequencies of 0.8 Hz. The experimental setup included a 1 in 10 sloping bed followed by horizontal bed with a constant 0.8 m water depth. To determine the breaking characteristics, plunging breaking waves were generated. Free surface elevations were recorded at different locations between the wave paddle to the cylinder. Wave impact pressures on the cylinder at a number of elevations along its height were measured under breaking regular waves. The depth-induced wave breaking characteristics, impact pressures, and wave run-up during impact for various cylinder locations are presented and discussed.

A Study on Upstream Waves for an Advancing Arbitrary Hull Shape in Restricted Water Channel

  • Kim, Sung-Young;Lee, Young-Gill
    • Journal of Ship and Ocean Technology
    • /
    • v.4 no.2
    • /
    • pp.24-37
    • /
    • 2000
  • The purpose of this paper is to study the upstream waves in front of an advancing arbitrary hull shape in a restricted water channel. Conventionally, in a restricted water channel, shallow water effects are amplified because of the finite water depth and width. When the effects of shallow water and the restricted channel width are severe, upstream waves propagate forward from the fore-body of the advancing hull. In this study, numerical simulations are carried out for the relevant analysis of the flow phenomena by the draft variation of advancing hull in a restricted water channel. Numerical simulations are done with a finite-difference method based on the MAC scheme in a rectangular grid system.

  • PDF

On the Wave Load of Tanker Model in a Shallow Water (특수선(特殊船) 설계(設計)에 관한 연구(硏究) -유조선(油槽船)의 천수중(淺水中)에서의 파랑하중(波浪荷重)-)

  • Z.G.,Kim;J.H.,Hwang;H.,Kim;J.M.,Yoo
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.17 no.2
    • /
    • pp.17-20
    • /
    • 1980
  • The shearing forces and bending moments acting on the tanker model[1] of $C_B$ 0.82 in regular oblique waves of shallow water are investigated by numerical calculations. The new strip method was adopted. It is concluded that in the shallow water shearing forces and the bending moments acting on the tanker model are higher than those of deep water waves by the present numerical investigations. The wave bending moment at the midship section is roughly twice of deep water value in the shallow of H/T less than 2. in this calculation.

  • PDF

Comparison of Edge Wave Normal Modes (Edge Wave 고유파형의 비교)

  • Seo, Seung Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.5
    • /
    • pp.285-290
    • /
    • 2013
  • Both full linear and shallow water edge waves are compared to get a better understanding of edge wave behavior. By using method of separation of variables, we are able to get solution of full linear edge wave presented by Ursell (1952) without derivation. The shallow water edge waves show dispersive features despite being derived from shallow water equations. When bottom slope is mild enough, shallow water edge wave tends to linear edge wave and has some advantages of manipulation. Solution of edge wave generated by a moving landslide of Gaussian shape is constructed by an expansion of shallow water normal modes. Numerical results are presented and discussed on their main features.

Comparison of the Shallow-Water Design Wave Height on the Korean East Coast Based on Wave Observation Data and Numerical Simulation (장기파랑관측자료와 수치실험에 의한 동해안 천해설계파고 검토)

  • Jeong, Weon-Mu;Choi, Hyukjin;Cho, Hong-Yeon;Oh, Sang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.5
    • /
    • pp.292-302
    • /
    • 2016
  • In this study, shallow-water design waves are estimated for various return periods based on statistical analysis of extreme waves observed 13 years at four stations on the Korean east coast (Sokcho, Mukho, Hupo, Jinha). These values are compared with the results from SWAN simulation by using the deep water design waves conventionally used in Korea (KORDI, 2005). It was found that the simulated values of the shallow-water design waves are comparatively smaller than the values from the extreme value analysis, expecially below 30 years frequency, which implies possible under-estimation of the deep-water design waves on the Korean east coast.

Inundation Analysis Considering Water Waves and Storm Surge in the Coastal Zone (연안역에서 고파랑과 폭풍해일을 고려한 침수해석)

  • Kim, Do-Sam;Kim, Ji-Min;Lee, Gwang-Ho;Lee, Seong-Dae
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.2 s.75
    • /
    • pp.35-41
    • /
    • 2007
  • In general, coastal damage is mostly occurred by the action of complex factors, like severe water waves. If the maximum storm surge height combines with high tide, severe water waves will overflow coastal structures. Consequently, it can be the cause of lost lives and severe property damage. In this study, using the numerical model, the storm surge was simulated to examine its fluctuation characteristics at the coast in front of Noksan industrial complex, Korea. Moreover, the shallow water wave is estimated by applying wind field, design water level considering storm surge height for typhoon Maemi to SWAN model. Under the condition of shallow water wave, obtained by the SWAN model, the wave overtopping rate for the dike in front of Noksan industrial complex is calculated a hydraulic model test. Finally, based on the calculated wave-overtopping rate, the inundation regime for Noksan industrial complex was predicted. And, numerically predicted inundation regimes and depths are compared with results in a field survey, and the results agree fairly well. Therefore, the inundation modelthis study is a useful tool for predicting inundation regime, due to the coastal flood of severe water wave.