• Title/Summary/Keyword: Shallow Carbonates

Search Result 13, Processing Time 0.016 seconds

Origin of limestone conglomerates in the Choson Supergroup(Cambro-Ordovician), mid-east Korea

  • Kwon Y.K.;Chough S.K.;Choi D.K.;Lee D.J.
    • 한국석유지질학회:학술대회논문집
    • /
    • autumn
    • /
    • pp.63-65
    • /
    • 2001
  • The Chosen Supergroup (Cambro-Ordovician), mid-east Korea consists mainly of shallow marine carbonates and contains a variety of limestone conglomerates. These conglomerates largely comprise oligomictic, rounded lime-mudstone clasts of various size and shape (equant, oval, discoidal, tabular, and irregular) and dolomitic shale matrices. Most clasts are characterized by jigsaw-fit (mosaic), disorganized, or edgewise fabric and autoclastic lithology. Each conglomerate layer is commonly interbedded with limestone-dolomitic shale couplets and occasionally underlain by fractured limestone layer, capped by calcareous shale. According to composition, characteristic sedimentary structures, and fabric, limestone conglomerates in the Hwajol, Tumugol, Makkol, and Mungok formations of Chosen Supergroup can be classified into 4 types: (1) disorganized polymictic conglomerate (Cd), (2) horizontally stratified polymictic conglomerate (Cs), (3) mosaic conglomerate (Cm), and (4) disorganized/edgewise oligomictic conglomerate (Cd/e). These conglomerates are either depositional (Cd and Cs) or diagenetic (Cm and Cd/e) in origin. Depositional conglomerates are interpreted as storm deposits, tidal channel fills, or transgressive lag deposits. On the other hand, diagenetic conglomerates are not deposited by normal sedimentary processes, but formed by post-depositional diagenetic processes. Diagenetic conglomerates in the Chosen Supergroup are characterized by autoclastic and oligomictic lithology of lime-mudstone clasts, jigsaw-fit (mosaic) fabric, edgewise fabric, and a gradual transition from the underlying bed (Table 1). Autoclastic and oligomictic lithologies may be indicative of subsurface brecciation (fragmentation). Consolidation of lime-mudstone clasts pre-requisite for brecciation may result from dissolution and reprecipitation of CaCO3 by degradation of organic matter during burial. Jigsaw-fit fabric has been considered as evidence for in situ fragmentation. The edgewise fabric is most likely formed by expulsion of pore fluid during compaction. The lower boundary of intraformational conglomerates of depositional origin is commonly sharp and erosional. In contrast, diagenetic conglomerate layers mostly show a gradual transition from the underlying unit, which is indicative of progressive fragmentation upward (Fig. 1). The underlying fractured limestone layer also shows evidence for in situ fragmentation such as jigsaw-fit fabric and the same lithology as the overlying conglomerate layer (Fig, 1). Evidence from the conglomerate beds in the Chosen Supergroup suggests that diagenetic conglomerates are formed by in situ subsurface fragmentation of limestone layers and rounding of the fragments. In situ subsurface fragmentation may be primarily due to compaction, dewatering (upward-moving pore fluids), and dissolution, accompanying volume reduction. This process commonly occurs under the conditions of (1) alternating layers of carbonate-rich and carbonate-poor sediments and (B) early differential cementation of carbonate-rich layers. Differential cementation commonly takes place between alternating beds of carbonate-rich and clay-rich layers, because high carbonate content promotes cementation, whereas clay inhibits cementation. After deposition of alternating beds and differential cementation, with progressive burial, upward-moving pore fluid may raise pore-pressure in the upper part of limestone layers, due to commonly overlying impermeable shale layers (or beds). The high pore-pressure may reinforce propagation of fragmentation and cause upward-expulsion of pore fluid which probably produces edgewise fabric of tabular clasts. The fluidized flow then extends laterally, causing reorientation and further rounding of clasts. This process is analogous to that of autobrecciation, which can be analogously termed autoconglomeration. This is a fragmentation and rounding process whereby earlier semiconsolidated portions of limestone are incorporated into still fluid portions. The rounding may be due mainly to immiscibility and surface tension of lime-mud. The progressive rounding of the fragmented clasts probably results from grain attrition by fluidized flow. A synthetic study of limestone conglomerate beds in the Chosen Supergroup suggests that very small percent of the conglomerate layers are of depositional origin, whereas the rest, more than $80\%$, are of diagenetic origin. The common occurrence of diagenetic conglomerates warrants further study on limestone conglomerates elsewhere in the world.

  • PDF

Geology, Mineralization, and Age of the Pocheon Fe(-Cu) Skarn Deposit, Korea (한국 포천 철(-동) 스카른 광상의 지질, 광화작용 및 생성연대)

  • Kim, Chang Seong;Go, Ji Su;Choi, Seon-Gyu;Kim, Sang-Tae
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.317-333
    • /
    • 2014
  • The Pocheon iron (-copper) deposit, located at the northwestern part of the Precambrian Gyeonggi massif in South Korea, genetically remains controversial. Previous researchers advocated a metamorphosed (-exhalative) sedimentary origin for iron enrichment. In this study, we present strong evidences for skarnification and Fe mineralization, spatially associated with the Myeongseongsan granite. The Pocheon deposit is composed of diverse carbonate rocks such as dolostone and limestone which are partially overprinted by various hydrothermal skarns such as sodic-calcic, calcic and magnesian skarn. Iron (-copper) mineralization occurs mainly in the sodic-calcic skarn zone, locally superimposed by copper mineralization during retrograde stage of skarn. Age data determined on phlogopites from retrograde skarn stage by Ar-Ar and K-Ar methods range from $110.3{\pm}1.0Ma$ to $108.3{\pm}2.8Ma$, showing that skarn iron mineralization in the Pocheon is closely related to the shallow-depth Myeongseongsan granite (ca. 112 Ma). Carbon-oxygen isotopic depletions of carbonates in marbles, diverse skarns, and veins can be explained by decarbonation and interaction with an infiltrating hydrothermal fluids in open system ($XCO_2=0.1$). The results of sulfur isotope analyses indicate that both of sulfide (chalcopyrite-pyrite composite) and anhydrites in skarn have very high sulfur isotope values, suggesting the $^{34}S$ enrichment of the Pocheon sulfide and sulfate sulfur was derived from sulfate in the carbonate protolith. Shear zones with fractures in the Pocheon area channeled the saline, high $fO_2$ hydrothermal fluids, resulting in locally developed intense skarn alteration at temperature range of about $500^{\circ}$ to $400^{\circ}C$.

Basin Evolution of the Taebaeksan Basin during the Early Paleozoic (전기 고생대 태백산분지의 분지 진화)

  • Kwon, Yi Kyun;Kwon, Yoo Jin;Yeo, Jung Min;Lee, Chang Yoon
    • Economic and Environmental Geology
    • /
    • v.52 no.5
    • /
    • pp.427-448
    • /
    • 2019
  • This study reconstructed the paleoenvironments and paleogeography of the Taebaeksan Basin, through a review of the previous researches on sedimentology, paleontology and stratigraphy. This study also carried out a sequence stratigraphic analysis on regional tectonism and sea-level fluctuations on the basin during the Early Paleozoic. The basin broadly occur in the Taebaek, Yeongweol-Jecheon, Jeongseon-Pyeongchang, and Mungyeong areas, Gangwon province, South Korea. The basin-fills are composed mainly of mixed carbonates and siliciclastics, divided into the Taebaek, Yeongweol, Yongtan, Pyeongchang and Mungyeong groups according to lithologies and stratigraphic characteristics. Recently, there are a lot of studies on the provenance and depositional ages of the siliciclastic sequences of the basin. The detrital sediments of the basin would be derived from two separated provenances of the core-Gondwana and Sino-Korean cratons. In the Early Cambrian, the Taebaek and Jeongseon-Pyeongchang platforms have most likely received detrital sediments from the provenance of the Sino-Korean craton. On the other hand, the detrital sediments of the Yeongweol-Jecheon platform was probably sourced by those of the core-Gondwana craton. This separation of provenance can be interpreted as the result of the paleogeographic and paleotopographic separation of the Yeongweol-Jecheon platform from the Taebaek and Jeongseon-Pyeongchang platforms. The analyses on detrital zircons additionally reveal that the separation of provenance was ceased by the eustatic rise of sea-level during the Middle Cambrian, and the detrital sediments of the Taebaeksan Basin were entirely supplied from those of the core-Gondwana craton. During that period, sediment supply from the Sino-Korean craton would be restricted due to inundation of the provenance area of the craton. On the other hand, the Jeongseon-Pyeongchang platform sequences show the unconformable relationship between the Early Cambrian siliciclastic and the Early Ordovician carbonate strata. It is indicative of presence of regional uplift movements around the platform which would be to the extent offset of the effects of the Middle to Late Cambrian eustatic sealevel rise. These movements expanded and were reinforced across the basin in the latest Cambrian and earliest Ordovician. After the earliest Ordovician, the basin was tectonically stabilized, and the shallow marine carbonate environments were developed on the whole-platform by the Early Ordovician global eustatic sea-level rise, forming very thick carbonate strata in the basin. In the Late Ordovician, the Early Paleozoic sedimentation on the basin was terminated by the large-scale tectonic uplift across the Sino-Korean platform including the Taebaeksan Basin.