• Title/Summary/Keyword: Shake test

Search Result 117, Processing Time 0.024 seconds

Seismic Response Characterization of Shear Wall in Auxiliary Building of Nuclear Power Plant (지진에 의한 원전 보조건물 전단벽의동적 응답 특성 추정)

  • Rahman, Md Motiur;Nahar, Tahmina Tasnim;Baek, Geonhwi;Kim, Dookie
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.93-102
    • /
    • 2021
  • The dynamic characterization of a three-story auxiliary building in a nuclear power plant (NPP) constructed with a monolithic reinforced concrete shear wall is investigated in this study. The shear wall is subjected to a joint-research, round-robin analysis organized by the Korea Atomic Energy Research Institute, South Korea, to predict seismic responses of that auxiliary building in NPP through a shake table test. Five different intensity measures of the base excitation are applied to the shaking table test to get the acceleration responses from the different building locations for one horizontal direction (front-back). Simultaneously to understand the global damage scenario of the structure, a frequency search test is conducted after each excitation. The primary motivation of this study is to develop a nonlinear numerical model considering the multi-layered shell element and compare it with the test result to validate through the modal parameter identification and floor responses. In addition, the acceleration amplification factor is evaluated to judge the dynamic behavior of the shear wall with the existing standard, thus providing theoretical support for engineering practice.

Earthquake Response Analysis for Three-Story Building with Reinforced Concrete Shear Walls (3층 철근콘크리트 전단벽 구조물의 지진응답해석)

  • Rhee, Inkyu;Lee, Eun-Haeng;Kim, Jae-Min
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.103-110
    • /
    • 2021
  • A shake table test is conducted for the three-story reinforced concrete building structure using 0.28 g, 0.5 g, 0.75 g, and 1.0 g of seismic input motions based on the Gyeongju earthquake. Computational efforts are made in parallel to explore the mechanical details in the structure. For engineering practice, the elastic modulus of concrete and rebar in the dynamic analysis is reduced to 38% and 50%, respectively, to calibrate the structure's natural frequencies. The engineering approach to the reduced modulus of elasticity is believed to be due to the inability to specify the flexibility of the actual boundary conditions. This aspect may lead to disadvantages of nonlinear dynamic analysis that can distort local stress and strain relationships. The initial elastic modulus can be applied directly without the so-called engineering adjustment with infinite element models with spring and spring-dashpot boundary conditions. This has the advantage of imposing the system flexibility of the structure on the sub-boundary conditions of springs and damping devices to control its sensitivity in a serial arrangement. This can reflect the flexibility of realistic boundary conditions and the effects of system damping (such as the gap between a concrete footing and shake table, loosening of steel anchors, etc.) in scalar quantities. However, these spring and dashpot coefficients can only be coordinated based on experimental results, making it challenging to select the coefficients in-prior to perform an experimental test.

Shake Table Test on Seismic Performance Evaluation of the Bolted Connection Type Paneling System with Exterior Finish Material (외부마감재가 부착된 볼트접합 방식 패널링 시스템의 내진성능평가를 위한 진동대 실험)

  • Oh, Sang Hoon;Park, Jong Won;Park, Hae Yong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.23-32
    • /
    • 2018
  • In this study, we conducted a shake table test to verify the seismic performance of the paneling system with steel truss composed of bolt connections. The control group was set to the traditional paneling system with steel truss connected by spot welding method. Test results showed that the bolted connection type paneling system has excellent deformation capacity without cracking or brittle fracture of the steel truss connection parts compared to the welding type paneling system. Furthermore, in the bolted connection type, slight damage occurred at the time of occurrence of the same story drift angle as compared with the existing method, it is considered that it has excellent seismic performance. In compliance with the performance-based design recommended for the current code (ASCE 41-13) on non-structural components, it is judged that in the case of the bolted connection type paneling system, it can be applied to all risk category structures without restriction. However, in the case of traditional paneling system with spot welding method, it is considered that it can be applied limitedly.

A Preliminary Study of the Global Application of HAZUS and ShakeMap for Loss Estimation from a Scenario Earthquake in the Korean Peninsula (지진재해예측을 위한 HAZUS와 ShakeMap의 한반도에서의 적용가능성 연구)

  • Kang, Su Young;Kim, Kwang-Hee;Kim, Dong Choon;Yoo, Hai-Soo;Min, Dong-Joo;Suk, Bbongchool
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.1
    • /
    • pp.47-59
    • /
    • 2007
  • Efficiency and limitations of HAZUS-MH, a GIS based systematic and informative system developed by FEMA and NIBS for natural hazard loss estimations, are discussed by means of a pilot study in the Korean Peninsula. Gyeongsang-do has been selected for the test after careful reviews of previous studies including historical and modern seismicity in the peninsula. A ShakeMap for the selected scenario earthquake with magnitude 6.7 in Gyeongju area is prepared. Then, any losses due to the scenario event have been estimated using HAZUS. Results of the pilot test show that the study area may experience significant physical, economic, and social damages. Detailed study in the future will provide efficient and crucial information to the decision makers and emergency agents to mitigate any disaster posed by natural hazards.

  • PDF

Global seismic performance of a new precast CFST column to RC beam braced frame: Shake table test and numerical study

  • Xu, S.Y.;Li, Z.L.;Liu, H.J.
    • Steel and Composite Structures
    • /
    • v.21 no.4
    • /
    • pp.805-827
    • /
    • 2016
  • A new type of precast CFST column to RC beam braced frame is proposed in this paper. A series of shake table tests were conducted to excite a one-third scale six-story model for investigating the global seismic performance of this type of structure against earthquake actions. Particular emphasis was given to its dynamic property, global seismic responses and failure path. Correspondingly, a numerical model built on the basis of fiber-beam-element model, multi-layer shell model and element-deactivation method was developed to simulate the seismic performance of the prototype structure. Numerical results were compared with the measured values from shake table tests to verify the validity and reliability of the numerical model. The results demonstrated that the proposed novel precast CFST column to RC beam braced frame performs excellently under strong earthquake excitations; the "strong CFST column-weak RC beam" and "strong connection-weak member" anti-seismic design principles can be easily achieved; the maximum deflections of precast CFSTC-RCB braced frame satisfied the deflection limitations proposed in national code; the numerical model can properly simulate the dynamic property and responses of the precast CFSTC-RCB braced frame that are highly concerned in engineering practice.

Shake table tests on a non-seismically detailed RC frame structure

  • Sharma, Akanshu;Reddy, G.R.;Vaze, K.K.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.1
    • /
    • pp.1-24
    • /
    • 2012
  • A reinforced concrete (RC) framed structure detailed according to non-seismic detailing provisions as per Indian Standard was tested on shake table under dynamic loads. The structure had 3 main storeys and an additional storey to simulate the footing to plinth level. In plan the structure was symmetric with 2 bays in each direction. In order to optimize the information obtained from the tests, tests were planned in three different stages. In the first stage, tests were done with masonry infill panels in one direction to obtain information on the stiffness increase due to addition of infill panels. In second stage, the infills were removed and tests were conducted on the structure without and with tuned liquid dampers (TLD) on the roof of the structure to investigate the effect of TLD on seismic response of the structure. In the third stage, tests were conducted on bare frame structure under biaxial time histories with gradually increasing peak ground acceleration (PGA) till failure. The simulated earthquakes represented low, moderate and severe seismic ground motions. The effects of masonry infill panels on dynamic characteristics of the structure, effectiveness of TLD in reducing the seismic response of structure and the failure patterns of non-seismically detailed structures, are clearly brought out. Details of design and similitude are also discussed.

Formulation and Verification on Ritz Method for In-Cabinet Response Spectrum (캐비닛내부응답스펙트럼 산정을 위한 리츠방법의 정식화 및 단순예제를 통한 검증)

  • Kim, Ki Hyun;Hong, Kee-Jeung;Cho, Sung Gook;Park, Woong Ki
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.5
    • /
    • pp.279-288
    • /
    • 2019
  • Safety-related cabinets and their electrical parts, such as relays and switches in nuclear power plants, should maintain continuous functioning, as well as structural safety according to the nuclear regulatory guidelines. Generally, an electrical part is qualified if its functioning is maintained without abnormality during excitement by motion compatible with the test response spectrum, which is larger than its in-cabinet response spectrum (ICRS). ICRS can be determined by shake-table test or dynamic analysis. Since existing cabinets in use can hardly be stopped and moved, dynamic analysis is preferred over shake-table test in determining ICRS. The simple method, suggested by the Electric Power Research Institute (EPRI) to determine ICRS, yields conservative or non-conservative results from time to time. In order to determine that the ICRS is better than EPRI method in a simple way, Ritz method considering global and local plate behaviors was suggested by Gupta et al. In this paper, the Ritz method is modified in order to consider the rocking and frame behaviors simultaneously, and it is applied to a simple numerical example for verification. ICRS is determined by Ritz method and compared with the results by finite element method (FEM). Based on this numerical example, recommendations for using Ritz method are suggested.

A Study on the Structural Performance of the Building Exterior Panel Using the Moving Clips (이동 클립을 이용한 건축물 외장재의 구조적 성능에 관한 연구)

  • Kwak, Eui-Shin;Ki, Chang-Gun;Lee, Sang-Ho;Shon, Su-Deok;Lee, Seung-Jae
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.29-36
    • /
    • 2017
  • A recent global trend in the increase of earthquake-related disasters has become so frequent as to cause various damages to a wide range of mid- to high-rise buildings. Particularly, more attention is being paid to the effect of horizontal load in high-rise buildings not only on the key structural elements of the structures, but also on the possibility of the secondary damages to them due to the failure of exterior panels, which are non-structural elements, but such damages are difficult to cope with as they may be caused by unexpected changes. The present study examined exterior panels using moving clips to prevent such secondary damages on the non-structural elements and analyzed the structural performance of these exterior panels through the finite element analysis and the shaking table test. The analysis results showed that the exterior panels using moving clips satisfied the structural performance against the allowable story drift of KBC2009 and the safety of the exterior panels was verified by the shake table test.

Systems to prevent the load resistance loss of pallet racks exposed to cyclic external force

  • Heo, Gwanghee;Kim, Chunggil;Baek, Eunrim;Jeon, Seunggon
    • Structural Engineering and Mechanics
    • /
    • v.83 no.6
    • /
    • pp.745-756
    • /
    • 2022
  • This study aims to determine the cause of the load resistance loss in storage racks that can be attributed to external forces such as earthquakes and to improve safety by developing reinforcement systems that can prevent load resistance loss. To this end, a static cyclic loading test was performed on pallet racks commonly used in logistics warehouses. The test results indicated that a pallet rack exposed to an external force loses more than 50% of its load resistance owing to the damage caused to column-beam joints. Three reinforcement systems were developed for preventing load resistance loss in storage racks exposed to an external force and for performing differentiated target functions: column reinforcement device, seismic damper, and viscoelastic damper. Shake table testing was performed to evaluate the earthquake response and verify the performance of these reinforcement systems. The results confirmed that, the maximum displacement, which causes the loss of load resistance and the permanent deformation of racks under external force, is reduced using the developed reinforcement devices. Thus, the appropriate selection of the developed reinforcement devices by users can help secure the safety of the storage racks.

Performance of retaining walls with and without sound wall under seismic loads

  • Mock, Erin;Cheng, Lijuan
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.909-935
    • /
    • 2014
  • The seismic characteristics of two semi-gravity reinforced concrete cantilever retaining walls are examined via an experimental program using an outdoor shake table (one with and the other without concrete masonry sound wall on top). Both walls are backfilled with compacted soil and supported on flexible foundation in a steel soil container. The primary damages during both tests are associated with significant lateral displacements of the wall caused by lateral earth pressure; however, no collapse occurs during the tests. The pressure distribution behind the walls has a nonlinear trend and conventional methods such as Mononobe-Okabe are insufficient for accurate pressure estimation.