• Title/Summary/Keyword: Shaft joint

Search Result 137, Processing Time 0.034 seconds

The Treatment of Tibial Shaft Fractures by Interlocking Nailing (Interlocking Nail을 사용한 경골간부 골절의 치료)

  • Lee, Jae-Chang;Lee, Jae-Sung;Ahn, Myun-Whan;Kim, Sae-Dong;Ihn, Joo-Chul
    • Journal of Yeungnam Medical Science
    • /
    • v.5 no.1
    • /
    • pp.61-67
    • /
    • 1988
  • The treatment of tibial shaft fracture has become one of the most controversial subjects in orthopedic surgery. Comminuted, segmental and rotationally unstable fractures or bone defect at fracture site have problems of the fixation. The interlocking nail solve these problems. We have experienced 8 cases of the tibial shaft fractures treated with interlocking nail from 1986 to 1988. Authors analysed these cases and our own clinical study. The results were as follows. 1. The average bone union rate was about 15 weeks. 2. The interval between operation and crutch walking was 4:3 weeks. 3. The merits of this operation were the short hospitalization and early adaptation of social activity. 4. The advantage is be able to do early ambulation without following muscular atrophy or joint stiffness. 5. The results were assessed on clinical examination and radiographic appearance by Hamza et al. An excellent results were 7 cases and good result was 1 case.

  • PDF

A Study on Adhesive Joints for Composite Driveshafts (복합재료 동력전달축의 접착조인트에 관한 연구)

  • 김진국;이대길;최진경;김일영
    • Composites Research
    • /
    • v.14 no.2
    • /
    • pp.13-21
    • /
    • 2001
  • Substituting composite structures for conventional metallic structures has many advantages because of higher specific stiffness and specific strength of composite materials. In this work, one-piece driveshafts composed of carbon/epoxy and glass/epoxy composites were designed and manufactured for a rear wheel drive automobile satisfying three design specifications, such as static torque transmission capability, torsional buckling and the fundamental natural bending frequency. Single lap adhesive joint was used to join the composite shaft and the aluminum yoke. The torque transmission capability of the adhesively bonded composite shaft was calculated with respect to bonding length and yoke thickness by finite element analysis and compared with the experimental result. Torque transmission capability was based on the Tsai-Wu failure index fur composite shaft and the failure model which incorporated the nonlinear mechanical behavior of aluminum yoke and epoxy adhesive. From the experiments and the finite element analyses, it was found that the static torque transmission capability of the composite driveshaft was highest at the critical yoke thickness, and saturated beyond the critical length. Also, it was found that the one-piece composite driveshaft had 40% weight saving effect compared with a conventional two-piece steel driveshaft.

  • PDF

Effects of Screw Configuration on Biomechanical Stability during Extra-articular Complex Fracture Fixation of the Distal Femur Treated with Locking Compression Plate (잠김 금속판(LCP-DF)을 이용한 대퇴골 원위부의 관절외 복합골절 치료시 나사못 배열에 따른 생체역학적 안정성 분석)

  • Kwon, Gyeong-Je;Jo, Myoung-Lae;Oh, Jong-Keon;Lee, Sung-Jae
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.3
    • /
    • pp.199-209
    • /
    • 2010
  • The locking compression plates-distal femur(LCP-DF) are being widely used for surgical management of the extra-articular complex fractures of the distal femur. They feature locking mechanism between the screws and the screw holes of the plate to provide stronger fixation force with less number of screws than conventional compression bone plate. However, their biomechanical efficacies are not fully understood, especially regarding the number of the screws inserted and their optimal configurations. In this study, we investigated effects of various screw configurations in the shaft and the condylar regions of the femur in relation to structural stability of LCP-DF system. For this purpose, a baseline 3-D finite element (FE) model of the femur was constructed from CT-scan images of a normal healthy male and was validated. The extra-articular complex fracture of the distal femur was made with a 4-cm defect. Surgical reduction with LCP-DF and bone screws were added laterally. To simulate various cases of post-op screw configurations, screws were inserted in the shaft (3~5 screws) and the condylar (4~6 screws) regions. Particular attention was paid at the shaft region where screws were inserted either in clustered or evenly-spaced fashion. Tied-contact conditions were assigned at the bone screws-plate whereas general contact condition was assumed at the interfaces between LCP-DF and bone screws. Axial compressive load of 1,610N(2.3 BW) was applied on the femoral head to reflect joint reaction force. An average of 5% increase in stiffness was found with increase in screw numbers (from 4 to 6) in the condylar region, as compared to negligible increase (less than 1%) at the shaft regardless of the number of screws inserted or its distribution, whether clustered or evenly-spaced. At the condylar region, screw insertion at the holes near the fracture interface and posterior locations contributed greater increase in stiffness (9~13%) than any other locations. Our results suggested that the screw insertion at the condylar region can be more effective than at the shaft during surgical treatment of fracture of the distal femur with LCP-DF. In addition, screw insertion at the holes close to the fracture interface should be accompanied to ensure better fracture healing.

Clinical and Radiographical Follow-up for Residual Displacement of Fracture Fragments after Interlocking Intramedullary Nailing in Humeral Shaft Fractures (상완골 간부 골절에서 교합성 골수강 내 금속정 고정 후 잔존한 골절편 전위에 대한 임상적, 방사선학적 추시)

  • Yum, Jae-Kwang;Lim, Dong-Ju;Jung, Eui-Yub;Sohn, Su-Een
    • Clinics in Shoulder and Elbow
    • /
    • v.16 no.2
    • /
    • pp.107-114
    • /
    • 2013
  • Purpose: This study is designed to evaluate the clinical and radiographical results for the displacement of fracture fragments after interlocking intramedullary nailing in humeral shaft fractures. Materials and Methods: We retrospectively reviewed the results of 8 cases of humeral shaft fractures that have displacements of over 10 mm and under 20 mm after interlocking intramedullary nailing between July 2004 and August 2011. The mean age was 54.1 years (range, 43 to 70 years) and there were 3 male and 5 female patients. Radiographically, the time to bony union, change of displacement and angulation of the fracture site, and degree of improvement of these two factors were measured. Clinically, the range of motion of shoulder and elbow joints, postoperative pain and complications were evaluated. Results: All cases showed complete bony union in last follow-up. The mean time to bony union was 16.1 weeks. At the last follow-up, almost all cases had normal range of motion of shoulder and elbow joints. But, one case had stiffness of shoulder joint. Therefore, arthroscopic capsular release and manipulation was performed. One case had transient shoulder pain and the other case had transient elbow pain. In the two cases, pull-out of proximal interlocking screw were noted, but they finally had bony union. Conclusion: Although considerable displacement of fracture fragments after interlocking intramedullary nailing in humeral shaft fractures was present, we had excellent radiographical and clinical outcomes. Therefore, an additional procedure, such as open reduction or another fixation for the fracture site, was not necessary.

A Comparative Study of Range of Motion With or Without Distal Interphalangeal Joint Fixation in Replantation of the Amputated Fingertips (수지 첨부 절단창의 재접합술 시 원위지 관절 고정과 운동 범위의 관계)

  • Han, Seung-Kyu;Roh, Si-Young;Kim, Jin-Soo;Lee, Dong-Chul;Ki, Sae-Hwi;Yang, Jae-Won
    • Archives of Reconstructive Microsurgery
    • /
    • v.20 no.1
    • /
    • pp.18-25
    • /
    • 2011
  • Purpose: In the process of replantation of the amputated fingertips, the primary concern was given to survival of the amputees, while the functional aspect of digits after the surgery has been easily neglected. Although an internal fixation with a K-wire is often a part of replantation of the amputated fingertips, little consideration had been given to the study of relationship between distal interphalangeal joint fixation and post operative range of motion. A comparative study in relation to post operative range of motion was done on two different groups, one group with K-wire insertion and the other group without a K-wire insertion at the distal interphalangeal joint. Materials and Methods: The study was done on the cases of a single digit amputation conducted at our institute (the age in the range of 10 to 60) in about four-year of time span from March of 2005 to March of 2009. The cases with a thumb replantation, osteomyelitis or articular surface injury have been excluded from this study. The cases of both head and shaft fracture, except the insertion site of tendon, of distal phalanx of internal fixation with a single K-wire were reviewed for this study. A group of 24 cases without distal interphalangeal joint fixation in comparison to a group of 22 cases with distal interphalangeal joint fixation was reviewed to assess the postoperative range of motion at distal interphalangeal joint on the 6th week after the surgery. And, on the 30th month after the surgery, a group of 10 cases without distal interphalangeal joint fixation in comparison to a group of 10 cases with joint fixation was reviewed. A K-wire was removed in about 5 weeks after the fracture was reunited under the radiographic image, immediately followed by a physical therapy. Result: The active range of motion for a group without interphalangeal joint fixation was measured $49.0^{\circ}$ on average, while $28.6^{\circ}$ was measured for a group with interphalengeal fixation on the 6th week after the surgery. On the 30th month after the surgery, the active range of motion was measured $52.0^{\circ}$ and $55.0^{\circ}$ on average for a group without and with interphalangeal fixation respectively. Conclusion: In the process of replantation of the amputated fingertips, short-term(on the 6th week) improvement of postoperative active motion of range can be expected in the cases without distal interphalangeal fixation in comparison to the cases of interphalangeal joint fixation with a K-wire. However, there seems to be no difference on motion of range in a long-term (on the 30th month) follow up period.

  • PDF

A Study on the Characteristics of Vibration Due to the Forces of Drive Shaft (승용차량 구동축의 작용력에 따른 진동특성 연구)

  • Sa, Jongsung;Kang, Taewon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.708-716
    • /
    • 2013
  • This study aims to understand the applied forces and related vibrational characteristics of a tripod joint (TJ), which is mostly used in front-drive-type middle-sized sedans in South Korea. The plunging force (PF) and generated axial force (GAF) are the most influential quantities related to the vibrational characteristics of a driveshaft. To obtain meaningful data, specially designed tests were performed using MTS test sets. The results of direct measurements reveal that higher PF and GAF values appear to worsen the vibrational characteristics of the vehicle. On the other hand, the measured apparent mass is useful for calculating the applied forces for a short driveshaft that has no dynamic vibration absorber. Among diversely controlled samples, it shows that the viscosity and tight fit are very sensitive to shudder vibrations of the vehicle. Therefore, these are good design factors for quality controls in the production line of constant-velocity joints.

Analysis of golf swing motion for specific properties of club shaft (클럽 샤프트(Club Shaft) 특성에 따른 골프 스윙(Golf Swing)동작 분석)

  • Kim, Sung-Il;Kim, Ky-Hyoung;Kim, Hyung-Soo;Lee, Hyun-Seob;Kim, Jin-Uk;Ahn, Chan-Gyu;Kim, Hee-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.17-32
    • /
    • 2002
  • The purpose of this study was to find the rational method to analyze golf swing with specific property of club shaft. Three subjects were filmed by two high speed digital cameras with 500 fps. The phase analyzed was downswing of each subject. The three-dimensional coordinates of the anatomical landmarks were obtained with motion analysis system Kwon3d 3.0 version and smoothed by lowpass digital filter with cutoff frequency 6Hz. From these data, kinematic and kinetic variables were calculated using Matlab(ver 5.0) The variables for this study were angular velocity and accelerations, which were calculated and following conclusions have been made : 1) Golf swing time of stiff club is faster than that of regular club. 2) In shoulder joint motion of swing with the stiff club, x-stiff showed mort rapid negative acceleration than that of regular club. 3) In regular club, the velocity of club head would be more effective velocity, which was increasing, than those of other clubs before impact. 4) In wrist joint motion of swing with stiff club, x-stiff club showed faster than regular club in the downswing and impact more rapid negative acceleration.

Development of Large Superalloy Exhaust Valve Spindle by Dissimilar Inertia Welding Process (이종재료 마찰용접에 의한 초내열합금 대형 배기밸브 스핀들 개발)

  • Park Hee-Cheon;Jeong Ho-Seung;Cho Jong-Rac;Lee Nak-Kyu;Oh Jung-Seok;Han Mvoung-Seoup
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.8
    • /
    • pp.891-898
    • /
    • 2005
  • Inertia welding is a solid-state welding process in which butt welds in materials are made in bar and in ring form at the joint race, and energy required lot welding is obtained from a rotating flywheel. The stored energy is converted to frictional heat at the interface under axial load. The quality of the welded joint depends on many parameters, including axial force, initial revolution speed and energy amount of upset. working time, and residual stresses in the joint. Inertia welding was conducted to make the large exhaust valve spindle for low speed marine diesel engine. superalloy Nimonic 80A for valve head of 540mm and high alloy SNCrW for valve stem of 115mm. Due to different material characteristics such as, thermal conductivity and flow stress. on the two sides of the weld interface, modeling is crucial in determining the optimal weld geometry and Parameters. FE simulation was performed by the commercial code DEFORM-2D. A good agreement between the Predicted and actual welded shape is observed. It is expected that modeling will significantly reduce the number of experimental trials needed to determine the weld parameters. especially for welds for which are very expensive materials or large shaft. Many kinds of tests, including macro and microstructure observation, chemical composition tensile , hardness and fatigue test , are conducted to evaluate the qualify of welded joints. Based on the results of the tests it can be concluded that the inertia welding joints of the superalloy exhaust valve spindle are better properties than the material specification of SNCrW.

Study on Friction Welding of SUS431 and SCM21 for External Shaft of Ship (선외기 샤프트용 재료의 마찰용접에 관한 연구)

  • 오세규;이종환;배명주;오명석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.38-48
    • /
    • 1993
  • A study on friction welding of stainless steel bar(SUS431) to chrome molybdenum steel bar(SCM21) was accomplished experimentally through analysis for relations among friction welding conditions, tension test, hardness test, microstructure test and acoustic emission test. The results obtained are summarized as follows ; 1. Through friction welding of SUS431 bar to SCM21 bar, the optimum welding condition by considering on strength and toughness was found to be the range of heating time of 3-5 sec when the number of rotating speed of 2000rpm, heating pressure of 10kg/$mm^2$, and upsetting time of 4 sec. 2. Quantitative ralationship was identified between heating time($T_1$, sec) and tensile strength (${\sigma},\;kgf/mm^2$) of the friction welded joint and the relation equation is $\sigma$=52.62$T_1{^{0.06}}$. 3. Through AE test, quantitative relationship was confirmed between heating time($T_1$, sec) and total AE(N, counts) during welding, and the relation is computed as follows ; N=30413.6$e^{0.06T1}$. 4. It was confirmed that the quantitative ralationship exists between the tensile strength of the welded joints and AE cumulative counts. And the relation is computed as the following ; ${\sigma}$=16.37(ln N)- 116.4. 5. When ONZ=36500-41500 counts by $OT_1Z$=3~5sec, it was identified by experiment that the range of welded joint tensile strength is 55.6-57.7kgf/$mm^2$/ whose joint efficiency is more than 100%, and it was experimentally confirmed that the real-time nondestructive quality(strength) evaluation for the friction welded joints could be possible by acoustic emission technique.

  • PDF

Case study on the reduction of airborne and structure-borne noise of a shipboard pump (함정탑재 펌프류 장비의 공기음/고체음 저감 사례 연구)

  • Kim, Sang-Ryul;Kim, Hyun-Sil;Kim, Bong-Ki;Kim, Jae-Seung;Kang, Hyun-Ju
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.411-415
    • /
    • 2007
  • The reduction of airborne and structure-borne noise of a shipboard pump for a navel ship is very important because the noise levels of the pump must not exceed criteria such as MIL-STD. In this paper, several practical examples of reducing the noise levels are presented. The examples show that the inadequate rotor-balancing and shaft-alignment results in the increase of the structure-borne noise on all lower mounts. It is also found that the unequal loading on mounts can cause the dramatically increasing the noise levels on certain local positions. Since the piping system arrangement such as valve location, flexible joint, and elbow location affects on the noise measurement, care must be taken to minimize the unnecessary noise from the piping system.

  • PDF