• Title/Summary/Keyword: Shaft End Displacement

Search Result 14, Processing Time 0.016 seconds

Skin Friction and End Bearing Resistances of Rock-socketed Piles Observed in Bi-directional Pile Load Tests (양방향 재하시험 결과를 이용한 암반소켓 현장타설말뚝의 주면 마찰력과 선단 지지력)

  • Song, Myung-Jun;Park, Yung-Ho;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.7
    • /
    • pp.17-36
    • /
    • 2013
  • In this paper, the empirical relations of skin friction and end bearing resistance with the results of site investigation in soft rock are proposed through the analysis of bi-directional pile load tests of rock socketed drilled shafts performed at large offshore bridge foundations and high-rise building projects (13 test piles in 4 projects). The site investigation and drilling for bi-directional pile load tests were performed at the centers of test piles, and f-w curves for skin friction and q-w curves for end bearing were plotted based on load-transfer measurements. From the above curves, the empirical relations of skin friction and end bearing resistance with the results of site investigation depending on the mobilized displacement are determined by multiple regression analysis and compared with previous studies. Since the f-w and q-w curves of rock-socketed piles in Korea show hardening behavior according to mobilized displacement, the developed empirical relations by the mobilized displacement are more reasonable than those of previous studies which could not consider the mobilized displacement and suggested the ultimate capacity with unconfined compressive strength only. Particularly, the developed equations correlated with unconfined compressive strength show the best correlations among the equations correlated with other parameters.

Load Transfer Mechanism of Drilled Shafts in Weathered Rock (풍화된 암반에 근입된 현장타설말뚝의 하중전이기구)

  • ;Cho Sung-Min;Jung Sung-Jun;Kim Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.187-196
    • /
    • 2005
  • Since the allowable bearing capacities of piles in weathered/fractured rock are mainly governed by settlement, the load-displacement behavior of pile should be known accurately. To predict pile head settlement at the design stage, the exact understanding of the load-transfer mechanisms is essential. Therefore, in this research, the load-transfer mechanism of drilled shaft socketed into weathered rock was investigated. For the investigation, five cast-in-place concrete piles with diameters of 1,000 mm were socketed into weathered gneiss. The static axial load tests and the load-transfer measurements were performed to examine the axial resistant behavior of the piles. A comprehensive field/laboratory testing program on weathered rock at the Held test sites was also performed to describe the in situ rock mass conditions quantitatively. And then, the effect of rock mass condition on the load transfer mechanism was investigated. The f-w (side shear resistance-displacement) curve of the pile in moderately weathered rock reached to yielding point at a for millimeter displacements, and after yielding point, the rate of resistance increment dramatically decreased. However, the f-w curve in the highly/completely weathered rock did not show the obvious yielding point, and the resistance gradually increased showing the hyperbolic pattern until relatively high displacement (>15 mm). The q-w (end bearing resistance-displacement) curves showed linear response at least until the base displacement of approximately 10 mm, regardless of rock mass conditions.

The Analysis of Swing Plane of Elite Golfers During Drive Swing (엘리트 골프 선수의 드라이버 스윙 시 스윙 평면 분석)

  • Lim, Young-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.1
    • /
    • pp.59-66
    • /
    • 2009
  • The purpose of this study was to evaluate flatness of swing plane and determine swing plane type using 3-D swing plane analysis from young elite male golf players. This study also investigate the possibility of determination of swing plane using other kinematic parameters except flatness. As results, no correlations was found between flatness and handicap. Comparison of flatness between single plane and multiple plane swing group were performed and found a significant difference. The error range of flatness, 10cm, which was used for distinguish swing plane type was effective since significant differences were found at MB, EB, and EF. These differences were typical characteristics to classify two swing styles. Other kinematic parameters such as unit vector components of shaft and displacement of shaft end point also compared per event but found no significant differences. However, the moving patterns of these parameters during a golf swing showed such characteristics of each swing plane type well that these parameters could be used to determine swing style as an indirect barometers.

Numerical analysis of an innovative expanding pile under static and dynamic loading

  • Abdullah Cheraghi;Amir K. Ghorbani-Tanha
    • Geomechanics and Engineering
    • /
    • v.32 no.4
    • /
    • pp.453-462
    • /
    • 2023
  • Designing pile foundations subjected to the uplift forces such as buildings, oil platforms, and anchors is becoming increasingly concerned. In this paper, the conceptual design of a new type of driven piles called expanding pile is presented and assessed. Some grooves have been created in the shaft of the novel pile, and some moveable arms have been designed at the pile tip. At first, static analyses using the finite element method were performed to evaluate the effectiveness of the innovative pile on the axial bearing capacity. Then its effect on seismic behavior of moment frame is considered. Results show that the expanding arms were provided an ideal anchorage system because of the soil's noticeable locking-up effect increasing uplift bearing capacity. For example at the end of the static tensile loading procedure, displacement decrement up to 55 percent is observed. In addition, comparing the uplift bearing capacity of the usual and new pile with different lengths in sand and clay layers shows noticeable effect and sharp increase up to about two times especially in longer piles. Besides, a sensible reduction in the seismic response and the stresses in the beam-column connection between 23-36 percent are achieved that ensures better seismic behavior of the structures.