• Title/Summary/Keyword: Shadowgraphy

Search Result 41, Processing Time 0.027 seconds

Comparision of Spray Angles of Pintle-Type Gasoline Injector with Different Measuring Methods (측정방법에 따른 핀틀형 가솔린 인젝터의 분무각 비교)

  • Kim, K.J.;Rhim, J.H.;No, S.Y.;Moon, B.S.;Kim, J.Y.;Kang, K.G.
    • Journal of ILASS-Korea
    • /
    • v.4 no.4
    • /
    • pp.9-16
    • /
    • 1999
  • Spray angle, a parameter which is most commonly used to evaluate. spray distribution, is important because it affects the axial and radial distribution of the fuel. Spray angles were measured and compared for the pintle-type gasoline fuel injector with n-heptane as a test fuel with the three different measuring techniques, i.e. digital image processing, shadowgraphy and spray patternator, respectively. Fuel was injected with the injection pressures of 0.2-0.35MPa into the room temperature and atmospheric pressure environment. In digital image processing method, the transmittance level greatly influences the spray angle with the axial distance from the injector. From the experimental results by the shadowgraphy technique, it is obvious that the spray angle vary during the injection period. The results of spray angle from the spray patternator show that there exist the different spray angles in the different areas. The spray angles increase with the increase in the injection pressure for the three measurement techniques considered in this study. The spray angle is widely different, especially in the near region from the injector, according to the measurement techniques used in this experimental work.

  • PDF

Influence of Critical Point of Hydrocarbon Jet Injected into Near-Critical Environment on Injection Behavior (근임계 환경으로 분사되는 탄화수소 제트의 임계점이 분사거동에 미치는 영향)

  • Yoon, Taekyung;Shin, Dongsoo;Lee, Keonwoong;Koo, Jaye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.5
    • /
    • pp.32-39
    • /
    • 2018
  • Supercritical injection behavior of liquid hydrocarbon compounds, which are used as main components of propellant fuel, was analyzed. Decane and Methylcyclohexane (MCH) with different critical points were selected as experimental fluid and Shadowgraphy technique was used. Decane and MCH behave differently in the initial state under the subcritical condition. However, near the critical point, the enthalpy of evaporation became close to 0, so that phase change into supercritical fluid occurred, not vaporization process, and no breakup of both fluids occurred.

Prediction of Mean Diameters Based on the Instability Theory for Twin Fluid Nozzle (불안정 이론을 이용한 2유체 노즐에서의 분무입경예측)

  • Kim, Kwan-Tae;Ahn, Kook-Young;Kim, Han-Seok;Ryu, Jeong-In
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.1
    • /
    • pp.57-64
    • /
    • 1996
  • The atomizing characteristics in a spray injected from a twin fluid atomization nozzle have been investigated. The Sauter mean diameters as mean diameter are compared with wavelength calculated from the instability theory. The Sauter mean diameter are measured by the Fraunhofer diffraction theory using the Malvern particle sizer. The wavelength is calculated using the mean relative velocity instead of the exit relative velocity of nozzle. Also shadowgraphy technique is used to visualize atomization phenomena. This paper gives a possibility that the mean diameter can be predicted with the wavelength obtained by the simple instability theory.

  • PDF

The Measurement of Bubble Driven Flow Using PIV and Digital Mask Technique (PIV 기법과 Digital Mask 기법을 적용한 버블유동 측정)

  • Kim, Sang-Moon;Kim, Hyun-Dong;Kim, Kyung-Chun
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2700-2703
    • /
    • 2008
  • An experiment on bubble-driven flow was performed in order to understand fundamental knowledge of flow structure around a rising bubble in a stagnant fluid. The measurement technique consists of a combination of the three most often used PIV techniques in multiphase flows: PIV with fluorescent tracer particles, the digital phase separation with a masking technique and a shadowgraphy. The key point of the measurement is that the background intensity of a PIV recording can be shifted to a higher level than a bubble region using a shadowgraphy in order to distinguish from fluorescent particles and a bubble as well. Flow fields were measured without an inaccurate analysis around a fluid-bubble interface by using only one camera simply.

  • PDF

A Study on the Post Processing of Flash Boiling Spray Image from Shadowgraphy (감압비등 분무의 역광이미지 후처리 기법에 관한 연구)

  • Hyunchang Lee
    • Journal of ILASS-Korea
    • /
    • v.29 no.2
    • /
    • pp.91-97
    • /
    • 2024
  • When investigating the droplet, spray, and impact of liquid on a solid plate, backlight imaging has been widely used to understand these phenomena. However, some previous studies have suffered from poor image quality. In this study, various combinations of image processing algorithms, such as white image correction, histogram equalization, CLAHE, Otsu's binarization, and multi-Otsu's binarization, have been applied to flash boiling spray images to enhance image quality for qualitative observation and semi-quantitative spray angle evaluation. To acquire images with high contrast for qualitative observation, applying CLAHE was effective, making small droplets and detailed shapes of the jet noticeable. However, when images were averaged to determine spray angle or penetration length based on intensity, this method induced artifact unphysical patterns, thus requiring careful consideration. Based on the algorithm proposed in this study, the spray angle variation according to injection pressure and temperature has been calculated, showing a reasonable trend.

Comparison of Spray Angles of Multihole Port Fuel Gasoline Injector with Different Measuring Methods (측정방법에 따른 흡기포트 분사식 다공 가솔린인젝터의 분무각 비교)

  • Kim, J.H.;Rhim, J.H.;No, S.Y.;Moon, B.S.
    • Journal of ILASS-Korea
    • /
    • v.5 no.3
    • /
    • pp.17-26
    • /
    • 2000
  • The main parameter commonly used to evaluate spray distribution is spray angle. Spray angle is important because it influences the axial and radial distribution of the fuel. Spray angles were measured and compared for the two non-air assisted injectors such as 2hole-2stream 4hole-1stream injectors used for port fuel injection gasoline engines with n-heptane as a fuel by three different measuring techniques, i.e., digital image processing, shadowgraphy, and spray patternator, respectively. Fuel was injected with the injection pressures of 0.2-0.35 MPa into the room temperature and atmospheric pressure environment. In digital image processing approach, the selection of the transmittance level is critical to obtain the edge of spray and hence to measure the spray angle. From the measurement results by the shadowgraphy technique, it is dear that the spray angle is varied during the spray injection period. The measurement results from spray patternator show that the different spray angles exist in different region. Spray angle increases with the increase in the injection pressure. it is suggested that the spray angle and stream separated angle should be specified when spray is characterized for 2hole-2stream injector, because spray angle is much different though stream separated angle is same. It was also considerably affected by the measurement techniques introduced in this experimental work. However, the optimal axial distance for measuring the spray angle seems to be at least 60-80 mm from the injector tip for two non-air assisted injectors.

  • PDF

Influence of Critical Point of Jet Injected into Near-Critical Environment on Phase Change (근임계 환경으로 분사되는 제트의 임계점이 상변화에 미치는 영향)

  • Yoon, Taekyung;Shin, Dongsoo;Son, Min;Shin, Bongchul;Koo, Jaye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.475-481
    • /
    • 2017
  • In this paper, high speed camera images were used to analyze the supercritical injection behavior of liquid hydrocarbon compounds used as main components of propellant fuel. Decane and Methylcyclohexane (MCH), which have different critical points among kerosene constituents, were selected as experimental fluid and Shadowgraphy technique was used for the analysis. The difference in the temperature variation from the initial injector state of the subcritical condition until the vaporization occurs was represented by the different behaviors of Decane and MCH. However, under the Supercritical conditions, the enthalpy of vaporization near the critical point approaches zero and the phase change to the Supercritical phase occurs instead of vaporization process. In the phase change of the Supercritical system, there was no rapid density change, so the liquid state image was observed in both the Decane and MCH.

  • PDF

Characteristics of Impinging Diesel Spray on the Heated Flat Wall in High Temperature and High Pressure Environments (고온.고압 환경에서 가열평판에 충돌하는 디젤분무의 특성)

  • Im, Gyeong-Hun;Lee, Bong-Su;Kim, Jong-Hyeon;Gu, Ja-Ye
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.627-633
    • /
    • 2001
  • Characteristics of a diesel spray impingement with the variation of ambient temperature, wall temperature and ambient pressure were investigated through shadowgraphy method by using high speed camera. The radial penetration of spray was increased with ambient temperature and wall temperature. It is resulted from the decrease of ambient gas density caused by the increase of temperature. The height of spray was also increased with ambient temperature and wall temperature, because the height of stagnate region is noticeably increased, although height of wall jet vortex is decreased. At the same ambient pressure, the area ratio of impinging spray of room temperature environment to high temperature environment was increased, as the temperature difference between room temperature and high temperature increases. And the increment of area ratio was higher at low ambient pressure than high ambient pressure.

Prediction of Mean Diameters Based on the Instability Theory for Twin Fluid Nozzle (불안정 이론을 이용한 2유체 노즐에서의 분무입경 예측)

  • Kim, Gwan-Tae;An, Guk-Yeong;Kim, Han-Seok
    • 연구논문집
    • /
    • s.25
    • /
    • pp.47-54
    • /
    • 1995
  • The atomizing characteristics in a spray injected from a twin fluid atomization nozzle have been investigated. The Sauter mean diameters as mean diameter are compared with wavelength calculated from the instability theory. The Sauter mean diameter are measured by the Fraunhofer diffraction theory using the Malvern particle sizer. The wavelength is calculated using the mean relative velocity instead of the exit relative velocity of nozzle. Also shadowgraphy technique is used to visualize atomization. This paper gives a possibility that the mean diameter can be predicted with the wavelength obtained by the simple instability theory.

  • PDF