• 제목/요약/키워드: Shadow extraction

검색결과 66건 처리시간 0.024초

건물 에지 버퍼를 이용한 Quickbird 영상의 도심지 그림자 추출 (Shadow Extraction of Urban Area using Building Edge Buffer in Quickbird Image)

  • 염준호;장안진;김용일
    • 한국측량학회지
    • /
    • 제30권2호
    • /
    • pp.163-171
    • /
    • 2012
  • 고해상도 위성영상은 높은 공간해상도의 이점으로 도심지역의 건물 및 도로망 분석, 경관 분석, 생태 환경 평가 등 다양한 분야에 활용되고 있다. 그러나 도심지역의 건물, 교량, 기타 구조물 등 높이 변화를 갖는 개체들은 영상 전체에 걸쳐 그림자 문제를 필연적으로 야기한다. 본 연구에서는 다양한 토지 이용 요소를 포함하는 넓은 영역의 도심지에 그림자 추출 기법을 적용하고, 수동으로 추출된 참조 그림자 지도와 비교하여 정량적인 평가를 수행하였다. 이를 위해 Canny 연산자와 팽창 필터를 이용하여 건물 영역의 인접 정보에 대한 버퍼 영역을 생성하고, Gram-Schmitt 융합 영상에 객체분할기법을 적용하여 생성된 객체들의 분광, 공간 인자들을 계산하였다. 이후 계산된 분광 및 공간 인자 특성과 건물 버퍼 영역과의 중첩여부를 바탕으로 도심지역의 그림자 추출에 가장 적합한 인자와 임계 규칙을 생성하였으며 추출된 그림자 지역 중 이상 객체를 추가적으로 제거하였다. 다양한 정량적 평가지수를 통해 제안된 그림자 추출 기법을 평가한 결과80%~90%의 높은 정확도를 나타냈다.

그림자영향 소거를 통한 아스팔트 도로 경계추출에 관한 연구 (A Study on the Asphalt Road Boundary Extraction Using Shadow Effect Removal)

  • 윤공현
    • 대한원격탐사학회지
    • /
    • 제22권2호
    • /
    • pp.123-129
    • /
    • 2006
  • 고해상도 컬러항공영상은 공간정보생성을 위한 지형의 상세한 정량적 및 정성적 정보를 제공해준다. 하지만 도심지역에서 빌딩 또는 숲에 의한 그림자의 발생으로 인하여 지물 추출 및 분류시 부정확한 결과를 초래 시킬 수 있다. 현재까지 그림자 효과에 대한 여러 연구가 이뤄졌으나 도심지에서 그림자의 발생으로 야기된 분광정보 왜곡의 문제점을 해결하여 도로추출에 대한 연구가 매우 부족한 실정이다 본 연구에서는 컬러항공사진과 LIDAR(LIght Detection and Ranging) 고도 자료를 이용하여 아스팔트 도로 경계선을 추출하는 기법을 제안하였다. 구체적으로 그림자 영향의 제거를 통한 아스팔트 도로 경계선의 추출과정은 다음과 같다. 첫 번째, 항공사진에서 그림자 영역을 LIDAR자료부터 생성된 DSM(Digital Surface Model)과 태양각으로부터 추출하였다. 그 후 도로영역추출기법, 경계선 검출기법을 통하여 도로의 경계를 추출하였으며 이 자료를 벡터화하므로서 GIS벡터의 선분 자료로 생성하였다. 본 연구의 실험결과 제안된 방법은 그림자의 영향을 소거하여 원활한 아스팔트 도로의 경계를 추출하는데 있어서 효과적임을 알 수 있었다.

SHADOW EXTRACTION FROM ASTER IMAGE USING MIXED PIXEL ANALYSIS

  • Kikuchi, Yuki;Takeshi, Miyata;Masataka, Takagi
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.727-731
    • /
    • 2003
  • ASTER image has some advantages for classification such as 15 spectral bands and 15m ${\sim}$ 90m spatial resolution. However, in the classification using general remote sensing image, shadow areas are often classified into water area. It is very difficult to divide shadow and water. Because reflectance characteristics of water is similar to characteristics of shadow. Many land cover items are consisted in one pixel which is 15m spatial resolution. Nowadays, very high resolution satellite image (IKONOS, Quick Bird) and Digital Surface Model (DSM) by air borne laser scanner can also be used. In this study, mixed pixel analysis of ASTER image has carried out using IKONOS image and DSM. For mixed pixel analysis, high accurated geometric correction was required. Image matching method was applied for generating GCP datasets. IKONOS image was rectified by affine transform. After that, one pixel in ASTER image should be compared with corresponded 15×15 pixel in IKONOS image. Then, training dataset were generated for mixed pixel analysis using visual interpretation of IKONOS image. Finally, classification will be carried out based on Linear Mixture Model. Shadow extraction might be succeeded by the classification. The extracted shadow area was validated using shadow image which generated from 1m${\sim}$2m spatial resolution DSM. The result showed 17.2% error was occurred in mixed pixel. It might be limitation of ASTER image for shadow extraction because of 8bit quantization data.

  • PDF

A Semi-automated Method to Extract 3D Building Structure

  • Javzandulam, Tsend-Ayush;Kim, Tae-Jung;Kim, Kyung-Ok
    • 대한원격탐사학회지
    • /
    • 제23권3호
    • /
    • pp.211-219
    • /
    • 2007
  • Building extraction is one of the essential issues for 3D city modelling. In recent years, high-resolution satellite imagery has become widely available and it brings new methodology for urban mapping. In this paper, we have developed a semi-automatic algorithm to determine building heights from monoscopic high-resolution satellite data. The algorithm is based on the analysis of the projected shadow and actual shadow of a building. Once two roof comer points are measured manually, the algorithm detects (rectangular) roof boundary automatically. Then it estimates a building height automatically by projecting building shadow onto the image for a given building height, counting overlapping pixels between the projected shadow and actual shadow, and finding the height that maximizes the number of overlapping pixels. Once the height and roof boundary are available, the footprint and a 3D wireframe model of a building can be determined. The proposed algorithm is tested with IKONOS images over Deajeon city and the result is compared with the building height determined by stereo analysis. The accuracy of building height extraction is examined using standard error of estimate.

SEMI-AUTOMATIC 3D BUILDING EXTRACTION FROM HIGH RESOLUTION SATELLITE IMAGES

  • Javzandulam, Tsend-Ayush;Rhee, Soo-Ahm;Kim, Tae-Jung;Kim, Kyung-Ok
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.606-609
    • /
    • 2006
  • Extraction of building is one of essential issues for the 3D city models generation. In recent years, high-resolution satellite imagery has become widely available, and this shows an opportunity for the urban mapping. In this paper, we have developed a semi-automatic algorithm to extract 3D buildings in urban settlements areas from high-spatial resolution panchromatic imagery. The proposed algorithm determines building height interactively by projecting shadow regions for a given building height onto image space and by adjusting the building height until the shadow region and actual shadow in the image match. Proposed algorithm is tested with IKONOS images over Deajeon city and the algorithm showed promising results.┌阀؀䭏佈䉌ᔀ鳪떭臬隑駭验耀

  • PDF

그림자효과 보정을 통한 향상된 도시정보 인식 (Enhanced Urban Information Recognition through Correction of Shadow Effects)

  • 손홍규;윤공현;박효근
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2003년도 춘계학술발표회 논문집
    • /
    • pp.187-190
    • /
    • 2003
  • Due to complexity of diverse features in urban area, accurate feature extraction is laborious task in aerial and satellite imagery. Especially occlusion by buildings, and image distortion of shadow effects make processing more difficult work. In this study, algorithm was presented to correct of shadow effects in aerial color images. This algorithm enables user to accurately interpretate urban information by correction of shadow effects in aerial color images

  • PDF

단일 고해상도 위성영상으로부터 그림자를 이용한 3차원 건물정보 추출 (Extraction of 3D Building Information using Shadow Analysis from Single High Resolution Satellite Images)

  • 이태윤;임영재;김태정
    • 대한공간정보학회지
    • /
    • 제14권2호
    • /
    • pp.3-13
    • /
    • 2006
  • 고해상도 위성영상으로부터 건물이나 도로 등 인공지물의 정보를 추출하기 위한 연구들이 활발히 진행되고 있다. 영상에서 3차원 건물 정보를 추출하기 위해서 기존의 많은 연구들은 스테레오 영상이나 별도의 지상기준점, 또는 LIDAR 데이터 등을 사용하고, 센서모델링 등을 수행하였다. 이 연구에서는 단일 영상만을 이용하고, 센서모델링 등의 복잡한 과정을 거치지 않고 직접 건물의 3차원 정보를 추출하는 알고리즘을 제안한다. 제안된 알고리즘은 영상에 나타난 건물의 실제 그림자와 가상으로 영상 위에 투영시킨 그림자가 일치했을 때, 건물의 높이를 결정하고, 결정된 건물의 높이를 이용하여 건물 정면의 모서리 선을 생성한다. 생성된 모서리 선을 따라서 건물의 지붕 외곽선을 이동시켜서 건물의 위치 정보를 얻어낸다. 제안된 알고리즘은 지표면의 그림자를 이용한 방법과 다른 건물의 정면에 나타난 그림자를 이용한 방법으로 나누어진다. 제안된 알고리즘을 검증하기 위해서 IKONOS 스테레오 영상과 지상기준점을 이용하여 추출한 건물 높이와 제안된 알고리즘을 이용하여 추출한 건물 높이를 비교하였으며, 30개의 건물을 검증해 본 결과 추출된 건물 높이의 RMSE는 약 1.5m로 나타났다.

  • PDF

신경망을 이용한 차량 객체의 그림자 제거 (Cast-Shadow Elimination of Vehicle Objects Using Backpropagation Neural Network)

  • 정성환;이준환
    • 한국ITS학회 논문지
    • /
    • 제7권1호
    • /
    • pp.32-41
    • /
    • 2008
  • 비디오를 이용한 비전기반 감시에서 움직이는 객체의 추적은 GMM (Gaussian Mixture Model)을 사용한 배경영상과 현재영상의 차이법을 이용한다. 문턱치를 통해 생성된 이진영상을 이용하여 객체 추적을 할 경우 객체 정보가 아닌 그림자에 의하여 객체가 병합되는 현상이 나타난다. 본 논문에서는 신경망(Backpropagation Neural Network)을 이용하여 그림자를 제거하는 방법을 제안하였다. 10개의 동영상에서 객체영역과 캐스트그림자(Cast-Shadow)영역의 훈련용 이미지에서 특징 값을 추출하여 신경망을 훈련시켰다. 캐스트그림자를 제거하는 방법은 이진영상의 객체로 추정되는 영역에서 그림자를 분리하는 방법을 기초로 하며 기존의 그림자 제거 알고리즘 (SNP, SP, DNM1, DNM2, CNCC)보다 그림자 제거 성능이 (16.2%, 38.2%, 28.1%, 22.3%, 44.4%)로 높게 나타났다.

  • PDF

도심지역의 고해상도 위성영상 정합에 대한 그림자 영향 분석 (Analysis of Shadow Effect on High Resolution Satellite Image Matching in Urban Area)

  • 염준호;한유경;김용일
    • 대한공간정보학회지
    • /
    • 제21권2호
    • /
    • pp.93-98
    • /
    • 2013
  • 다중 시기에 수집된 고해상도 위성영상은 효과적인 도심지 분석과 모니터링을 위한 필수적인 자료이다. 그러나 같은 지역에 대해 다른 센서에서 수집된 영상은 물론, 동일 센서 영상이라 하더라도 두 영상간의 기하학적 위치정보가 서로 일치하지 않는 문제가 존재한다. 따라서 다중 영상의 효과적인 활용을 위해서는 영상 정합을 위해 매칭 포인트를 추출하는 일이 필수적이다. 그러나 도심지의 경우 건물, 교량, 나무, 기타 인공 구조물 등의 영향으로 넓은 영역에 그림자가 분포하며 그림자의 방향과 강도는 영상 수집 시기에 따라 달라지기 때문에 정확한 매칭 포인트를 추출하는데 어려움이 있다. 본 연구에서는 대표적인 매칭점 추출 기법인 SIFT(Scale-Invariant Feature Transform) 기법과 자동 그림자 추출 기법을 적용하여 도심지역의 그림자가 영상 정합에 미치는 영향을 분석하였다. 영상 분할을 통해 생성된 세그먼트의 분광 및 공간인자를 이용하여 그림자 객체를 추출하였으며 이 때 건물 버퍼 영역을 그림자의 인접정보로서 활용하였다. SIFT 기법을 통해 추출된 매칭점이 그림자에 위치하는 경우 이를 제거하고 영상 정합을 수행하였다. 최종적으로 고해상도 위성영상의 정합에 대한 그림자의 영향을 분석하기 위해 추출된 매칭점과 정합 결과의 정확도를 정량적, 시각적으로 평가하였다.

Visualization Of Aerial Color Imagery Through Shadow Effect Correction

  • Sohn, Hong-Gyoo;Yun, Kong-Hyun;Yang, In-Tae;Lee, Kangwon
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2004년도 Korea-Russia Joint Conference on Geometics
    • /
    • pp.64-72
    • /
    • 2004
  • Correction of shadow effects is critical step for image interpretation and feature extraction from aerial imagery. In this paper, an efficient algorithm to correct shadow effects from aerial color imagery is presented. The following steps have been performed to remove the shadow effect. First, the shadow regions are precisely located using the solar position and the height of ground objects derived from LIDAR (Light Detection and Ranging) data. Subsequently, segmentation of context regions is implemented for accurate correction with existing digital map. Next step, to calculate correction factor the comparison between the context region and the same non-shadowed context region is made. Finally, corrected image is generated by correcting the shadow effect. The result presented here helps to accurately extract and interpret geo-spatial information from aerial color imagery

  • PDF