고해상도 위성영상은 높은 공간해상도의 이점으로 도심지역의 건물 및 도로망 분석, 경관 분석, 생태 환경 평가 등 다양한 분야에 활용되고 있다. 그러나 도심지역의 건물, 교량, 기타 구조물 등 높이 변화를 갖는 개체들은 영상 전체에 걸쳐 그림자 문제를 필연적으로 야기한다. 본 연구에서는 다양한 토지 이용 요소를 포함하는 넓은 영역의 도심지에 그림자 추출 기법을 적용하고, 수동으로 추출된 참조 그림자 지도와 비교하여 정량적인 평가를 수행하였다. 이를 위해 Canny 연산자와 팽창 필터를 이용하여 건물 영역의 인접 정보에 대한 버퍼 영역을 생성하고, Gram-Schmitt 융합 영상에 객체분할기법을 적용하여 생성된 객체들의 분광, 공간 인자들을 계산하였다. 이후 계산된 분광 및 공간 인자 특성과 건물 버퍼 영역과의 중첩여부를 바탕으로 도심지역의 그림자 추출에 가장 적합한 인자와 임계 규칙을 생성하였으며 추출된 그림자 지역 중 이상 객체를 추가적으로 제거하였다. 다양한 정량적 평가지수를 통해 제안된 그림자 추출 기법을 평가한 결과80%~90%의 높은 정확도를 나타냈다.
고해상도 컬러항공영상은 공간정보생성을 위한 지형의 상세한 정량적 및 정성적 정보를 제공해준다. 하지만 도심지역에서 빌딩 또는 숲에 의한 그림자의 발생으로 인하여 지물 추출 및 분류시 부정확한 결과를 초래 시킬 수 있다. 현재까지 그림자 효과에 대한 여러 연구가 이뤄졌으나 도심지에서 그림자의 발생으로 야기된 분광정보 왜곡의 문제점을 해결하여 도로추출에 대한 연구가 매우 부족한 실정이다 본 연구에서는 컬러항공사진과 LIDAR(LIght Detection and Ranging) 고도 자료를 이용하여 아스팔트 도로 경계선을 추출하는 기법을 제안하였다. 구체적으로 그림자 영향의 제거를 통한 아스팔트 도로 경계선의 추출과정은 다음과 같다. 첫 번째, 항공사진에서 그림자 영역을 LIDAR자료부터 생성된 DSM(Digital Surface Model)과 태양각으로부터 추출하였다. 그 후 도로영역추출기법, 경계선 검출기법을 통하여 도로의 경계를 추출하였으며 이 자료를 벡터화하므로서 GIS벡터의 선분 자료로 생성하였다. 본 연구의 실험결과 제안된 방법은 그림자의 영향을 소거하여 원활한 아스팔트 도로의 경계를 추출하는데 있어서 효과적임을 알 수 있었다.
ASTER image has some advantages for classification such as 15 spectral bands and 15m ${\sim}$ 90m spatial resolution. However, in the classification using general remote sensing image, shadow areas are often classified into water area. It is very difficult to divide shadow and water. Because reflectance characteristics of water is similar to characteristics of shadow. Many land cover items are consisted in one pixel which is 15m spatial resolution. Nowadays, very high resolution satellite image (IKONOS, Quick Bird) and Digital Surface Model (DSM) by air borne laser scanner can also be used. In this study, mixed pixel analysis of ASTER image has carried out using IKONOS image and DSM. For mixed pixel analysis, high accurated geometric correction was required. Image matching method was applied for generating GCP datasets. IKONOS image was rectified by affine transform. After that, one pixel in ASTER image should be compared with corresponded 15×15 pixel in IKONOS image. Then, training dataset were generated for mixed pixel analysis using visual interpretation of IKONOS image. Finally, classification will be carried out based on Linear Mixture Model. Shadow extraction might be succeeded by the classification. The extracted shadow area was validated using shadow image which generated from 1m${\sim}$2m spatial resolution DSM. The result showed 17.2% error was occurred in mixed pixel. It might be limitation of ASTER image for shadow extraction because of 8bit quantization data.
Building extraction is one of the essential issues for 3D city modelling. In recent years, high-resolution satellite imagery has become widely available and it brings new methodology for urban mapping. In this paper, we have developed a semi-automatic algorithm to determine building heights from monoscopic high-resolution satellite data. The algorithm is based on the analysis of the projected shadow and actual shadow of a building. Once two roof comer points are measured manually, the algorithm detects (rectangular) roof boundary automatically. Then it estimates a building height automatically by projecting building shadow onto the image for a given building height, counting overlapping pixels between the projected shadow and actual shadow, and finding the height that maximizes the number of overlapping pixels. Once the height and roof boundary are available, the footprint and a 3D wireframe model of a building can be determined. The proposed algorithm is tested with IKONOS images over Deajeon city and the result is compared with the building height determined by stereo analysis. The accuracy of building height extraction is examined using standard error of estimate.
대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
/
pp.606-609
/
2006
Extraction of building is one of essential issues for the 3D city models generation. In recent years, high-resolution satellite imagery has become widely available, and this shows an opportunity for the urban mapping. In this paper, we have developed a semi-automatic algorithm to extract 3D buildings in urban settlements areas from high-spatial resolution panchromatic imagery. The proposed algorithm determines building height interactively by projecting shadow regions for a given building height onto image space and by adjusting the building height until the shadow region and actual shadow in the image match. Proposed algorithm is tested with IKONOS images over Deajeon city and the algorithm showed promising results. ┌阀 䭏佈䉌ᔀ鳪떭臬隑駭验耀
Due to complexity of diverse features in urban area, accurate feature extraction is laborious task in aerial and satellite imagery. Especially occlusion by buildings, and image distortion of shadow effects make processing more difficult work. In this study, algorithm was presented to correct of shadow effects in aerial color images. This algorithm enables user to accurately interpretate urban information by correction of shadow effects in aerial color images
고해상도 위성영상으로부터 건물이나 도로 등 인공지물의 정보를 추출하기 위한 연구들이 활발히 진행되고 있다. 영상에서 3차원 건물 정보를 추출하기 위해서 기존의 많은 연구들은 스테레오 영상이나 별도의 지상기준점, 또는 LIDAR 데이터 등을 사용하고, 센서모델링 등을 수행하였다. 이 연구에서는 단일 영상만을 이용하고, 센서모델링 등의 복잡한 과정을 거치지 않고 직접 건물의 3차원 정보를 추출하는 알고리즘을 제안한다. 제안된 알고리즘은 영상에 나타난 건물의 실제 그림자와 가상으로 영상 위에 투영시킨 그림자가 일치했을 때, 건물의 높이를 결정하고, 결정된 건물의 높이를 이용하여 건물 정면의 모서리 선을 생성한다. 생성된 모서리 선을 따라서 건물의 지붕 외곽선을 이동시켜서 건물의 위치 정보를 얻어낸다. 제안된 알고리즘은 지표면의 그림자를 이용한 방법과 다른 건물의 정면에 나타난 그림자를 이용한 방법으로 나누어진다. 제안된 알고리즘을 검증하기 위해서 IKONOS 스테레오 영상과 지상기준점을 이용하여 추출한 건물 높이와 제안된 알고리즘을 이용하여 추출한 건물 높이를 비교하였으며, 30개의 건물을 검증해 본 결과 추출된 건물 높이의 RMSE는 약 1.5m로 나타났다.
비디오를 이용한 비전기반 감시에서 움직이는 객체의 추적은 GMM (Gaussian Mixture Model)을 사용한 배경영상과 현재영상의 차이법을 이용한다. 문턱치를 통해 생성된 이진영상을 이용하여 객체 추적을 할 경우 객체 정보가 아닌 그림자에 의하여 객체가 병합되는 현상이 나타난다. 본 논문에서는 신경망(Backpropagation Neural Network)을 이용하여 그림자를 제거하는 방법을 제안하였다. 10개의 동영상에서 객체영역과 캐스트그림자(Cast-Shadow)영역의 훈련용 이미지에서 특징 값을 추출하여 신경망을 훈련시켰다. 캐스트그림자를 제거하는 방법은 이진영상의 객체로 추정되는 영역에서 그림자를 분리하는 방법을 기초로 하며 기존의 그림자 제거 알고리즘 (SNP, SP, DNM1, DNM2, CNCC)보다 그림자 제거 성능이 (16.2%, 38.2%, 28.1%, 22.3%, 44.4%)로 높게 나타났다.
다중 시기에 수집된 고해상도 위성영상은 효과적인 도심지 분석과 모니터링을 위한 필수적인 자료이다. 그러나 같은 지역에 대해 다른 센서에서 수집된 영상은 물론, 동일 센서 영상이라 하더라도 두 영상간의 기하학적 위치정보가 서로 일치하지 않는 문제가 존재한다. 따라서 다중 영상의 효과적인 활용을 위해서는 영상 정합을 위해 매칭 포인트를 추출하는 일이 필수적이다. 그러나 도심지의 경우 건물, 교량, 나무, 기타 인공 구조물 등의 영향으로 넓은 영역에 그림자가 분포하며 그림자의 방향과 강도는 영상 수집 시기에 따라 달라지기 때문에 정확한 매칭 포인트를 추출하는데 어려움이 있다. 본 연구에서는 대표적인 매칭점 추출 기법인 SIFT(Scale-Invariant Feature Transform) 기법과 자동 그림자 추출 기법을 적용하여 도심지역의 그림자가 영상 정합에 미치는 영향을 분석하였다. 영상 분할을 통해 생성된 세그먼트의 분광 및 공간인자를 이용하여 그림자 객체를 추출하였으며 이 때 건물 버퍼 영역을 그림자의 인접정보로서 활용하였다. SIFT 기법을 통해 추출된 매칭점이 그림자에 위치하는 경우 이를 제거하고 영상 정합을 수행하였다. 최종적으로 고해상도 위성영상의 정합에 대한 그림자의 영향을 분석하기 위해 추출된 매칭점과 정합 결과의 정확도를 정량적, 시각적으로 평가하였다.
한국측량학회 2004년도 Korea-Russia Joint Conference on Geometics
/
pp.64-72
/
2004
Correction of shadow effects is critical step for image interpretation and feature extraction from aerial imagery. In this paper, an efficient algorithm to correct shadow effects from aerial color imagery is presented. The following steps have been performed to remove the shadow effect. First, the shadow regions are precisely located using the solar position and the height of ground objects derived from LIDAR (Light Detection and Ranging) data. Subsequently, segmentation of context regions is implemented for accurate correction with existing digital map. Next step, to calculate correction factor the comparison between the context region and the same non-shadowed context region is made. Finally, corrected image is generated by correcting the shadow effect. The result presented here helps to accurately extract and interpret geo-spatial information from aerial color imagery
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.