• 제목/요약/키워드: Shadow effect Mitigation

검색결과 5건 처리시간 0.016초

주변 건축물에 미치는 복합일조장해 영향 및 완화 방안에 관한 연구 (A Study on the Effect of Integrated Shadows on Neighboring Areas and its Mitigation)

  • 박선환;오승륜;윤주일;한상욱;장윤영;김임순
    • 환경영향평가
    • /
    • 제16권3호
    • /
    • pp.195-206
    • /
    • 2007
  • The purpose of this research is to seek solutions in reducing shadow effects of construction projects on neighboring areas and as its result, we have yielded methods as below to mitigate shadow effects. To eliminate shadow effects fundamentally, revising building layouts to eliminate shadow effects by obtain construction site as much as two point two times of its height. But it will cause multiple problems such as economic inefficiency due to lack of construction sites as well as small sites that are often located in zones that are mixed with highly dense commercial and residential areas along with plan more parks on northern part of the construction site. Therefore, it is recommended to proceed Environmental affect evaluation for shadow effects and gain its residents permission prior to construction or revising building layout. In the other hand, the sunlight collector, which is one of the newly developed recycled energy, has been proven to improve illumination expected to become a reliable solution when dealing with shadow issue in and around high density residential areas.

Evaluation of Water Retentive Pavement as Mitigation Strategy for Urban Heat Island Using Computational Fluid Dynamics

  • Cortes, Aiza;Shimadera, Hikari;Matsuo, Tomohito;Kondo, Akira
    • Asian Journal of Atmospheric Environment
    • /
    • 제10권4호
    • /
    • pp.179-189
    • /
    • 2016
  • Here we evaluated the effect of using water retentive pavement or WRP made from fly ash as material for main street in a real city block. We coupled computational fluid dynamics and pavement transport (CFD-PT) model to examine energy balance in the building canopies and ground surface. Two cases of 24 h unsteady analysis were simulated: case 1 where asphalt was used as the pavement material of all ground surfaces and case 2 where WRP was used as main street material. We aim to (1) predict diurnal variation in air temperature, wind speed, ground surface temperature and water content; and (2) compare ground surface energy fluxes. Using the coupled CFD-PT model it was proven that WRP as pavement material for main street can cause a decrease in ground surface temperature. The most significant decrease occurred at 1200 JST when solar radiation was most intense, surface temperature decreased by $13.8^{\circ}C$. This surface temperature decrease also led to cooling of air temperature at 1.5 m above street surface. During this time, air temperature in case 2 decreased by $0.28^{\circ}C$. As the radiation weakens from 1600 JST to 2000 JST, evaporative cooling had also been minimal. Shadow effect, higher albedo and lower thermal conductivity of WRP also contributed to surface temperature decrease. The cooling of ground surface eventually led to air temperature decrease. The degree of air temperature decrease was proportional to the surface temperature decrease. In terms of energy balance, WRP caused a maximum increase in latent heat flux by up to $255W/m^2$ and a decrease in sensible heat flux by up to $465W/m^2$.

NREL 5MW 풍력터빈의 블레이드 하중 저감을 위한 개별피치제어 (Individual Pitch Control of NREL 5MW Wind Turbine Blade for Load Reduction)

  • 라요한;남윤수;손재훈
    • 대한기계학회논문집A
    • /
    • 제36권11호
    • /
    • pp.1427-1432
    • /
    • 2012
  • 풍력터빈이 점차 대형화 되면서 로터 직경도 점차 커지고 있다. 로터 블레이드는 윈드시어와 타워교란 효과로부터 기계적 하중을 받게 된다. 이러한 기계적 하중은 풍력터빈의 수명을 단축시킨다. 따라서, 풍력터빈의 크기가 커짐에 따라 기계적 하중 완화를 위한 풍력터빈 제어 시스템 설계가 중요하다. 본 논문에서는 로터 블레이드의 기계적 하중 저감을 위한 개별 피치 제어에 대해 소개하고 IPC 성능 검증을 위해 시뮬레이션을 통하여 논의한다.

도시 열섬 완화를 위한 가로형 집합주택 계획모델 연구 (A Design Model Development for Street-Oriented Block Housing Reducing Urban Heat Island Effects)

  • 김호정
    • 대한건축학회논문집:계획계
    • /
    • 제35권6호
    • /
    • pp.27-37
    • /
    • 2019
  • This study focused on the possibility of reducing the cooling load through the change of micro climate in the outdoor space during summer season. This study proposes an efficient planning model by comparing the effects of urban heat island mitigation through wind path planning, outdoor space vegetation, and exterior material change by using the basic model of the street-oriented block housing proposed in the previous research by the same author. As a result, the most effective wind path planning strategy in the street-oriented block housing was the change of the air flow through the mass height adjustment. When the tall building masses were staggered and arranged in a balanced manner, the overall wind environment could be improved. The greater the height difference between low and high masses, the better the air flow was shown. It was also important to arrange the building masses so that the inlet of the main wind was open and to allow the external space to connect to the adjacent block to create a continuous flow. The change of outdoor space vegetation and flooring, and the formation of wind paths through the opening of lower part also showed the effect of heat island reduction. In addition, the change of PMV in summer was the biggest influence of shadow by tall building mass. Attention should be paid to the fact that high-albedo exterior materials are adversely affected by multiple reflections in dense street-oriented block housing. The use of albedo of the exterior material showed that it is necessary to pay attention to apply in the high density block housing. This is attributed to the rise of the temperature due to the absorption of energy into the low-albedo flooring, where the high-albedo exterior causes multiple reflections.

고밀도 주거지역에서의 복사플럭스 영향 연구 - 서울시 중랑구 지역을 대상으로 - (Radiation Flux Impact in High Density Residential Areas - A Case Study from Jungnang area, Seoul -)

  • 이채연;권혁기;프레드릭 린드버그
    • 한국지리정보학회지
    • /
    • 제21권4호
    • /
    • pp.26-49
    • /
    • 2018
  • 본 연구는 도시지역을 대상으로 태양복사모델링을 수행하고 검증하여, 도시 내 열스트레스 완화에 대한 적용 가능성을 논의하였다. 이를 위해 연구지역은 항공 LiDAR 자료를 기반으로 실제 건물과 식생의 형태와 높이가 구현되었고, 보행자높이에서의 단파 및 장파복사 플럭스가 모의될 수 있도록 해상도를 향상시켰다. 고층 및 저층 건물이 고밀도로 존재하는 주거지역 $4km^2$에서 SOLWEIG 모델을 이용하여 복사플럭스를 모의하고, 지표에너지수지시스템의 Net radiometer를 이용한 복사플럭스 관측자료로 검증하였다. 그 결과 여름철 맑은 날 가장 높은 정확도를 나타냈고, 같은 날에 대한 평균복사온도를 모의한 결과, 그림자영향이 적은 저층 건물지역과 도로표면에서 가장 높은 수치를 나타냈으며, 고층 건물지역과 식생지역에서는 그림자의 영향으로 상대적으로 낮은 수치를 나타냈다. 본 연구에서 제안된 방법은 보행자높이에서 도시 내 열스트레스 지역 관리를 위한 높은 신뢰도를 보여주었다. 더욱 확장되고 있는 도시재생 및 재개발에 있어서, 새로운 주거환경을 도입하기 위해 도시 기반시설을 계획할 때 자연 및 인공 도시환경 설정과 관련된 많은 기능이 적용될 수 있다.